首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以某年产25万吨大型碳化硅园区无组织排放面源为例,提出基于多个地面站气象数据的CALPUFF模型地面浓度反推方法,优化流场模拟,使得无组织面源源强核算结果更加准确,并以环境保护目标空气质量达标为原则,核算其大气污染物减排指标,得出具体结论:园区大气污染物SO2、NOX、CO、PM10年排放量分别为449.06t、86.98t、5158.58t、115.06t;无组织排放SO2、CO及PM10的减排比例分别为63.5%、19.2%、42.44%,对应减排量分别为285.16 t/a、990.45 t/a、48.83 t/a。  相似文献   

2.
佛山禅城区机动车尾气排放特征及分布   总被引:1,自引:0,他引:1  
通过对禅城区不同道路类型交通流进行调查分析,运用COPERT模式计算出2008年佛山地区机动车排放因子,分析出禅城区机动车尾气排放的主要来源及主要特征,得到了禅城区机动车尾气排放总量及排放分担率.根据佛山市辖区区间出行车辆较多的特点,采用源强估算总量的方法计算区内机动车污染排放.结果表明,禅城区2008年CO、NOx、VOC、PM的排放量分别为72 356.86 t、7 288.38 t、9 991.68 t和366.80 t.不同车型对不同污染物的排放贡献率差别明显,尤以摩托车的CO、VOC排放贡献较高,分别占机动车排放污染物总量的85%和77%.道路局部污染最严重的道路类型为国道,整体污染最为严重的为主干路.区内机动车劣化严重,占机动车总量37%的国0车的CO、NOx、VOC、PM排放分担率分别占机动车排放总量的68%、45%、58%、63%.不同车型、不同排放标准的排放因子存在较大差别,轻型车的CO、VOC较高而重型车的NOx、PM排放因子较高.  相似文献   

3.
北京铁路机车尾气排放清单的建立   总被引:2,自引:1,他引:1  
排放清单是空气质量模拟和环境管理的基础.介绍了铁路运输尾气排放清单建立方法.基于美国环保局(USEPA)的排放因子,根据我国和美国排放标准的比较以及国内测试数据,确定了我国铁路机车尾气排放因子,并以北京为例,基于GIS铁路线路分布、内燃机车功率、运行车次和运行路线计算了铁路运输大气污染物NO_x、CO、HC和PM_(10)排放量,建立了排放清单.结果表明,基准年2007年北京铁路运输尾气排放量NO_x、CO、HC和PM_(10)分别为7 232 t、728 t、316 t和181 t,与2002年机动车排放量相比,4种污染物火车机车排放量分别占4.90%、0.08%、0.24%和1.12%.  相似文献   

4.
为了建立北京市工程机械排放清单,测算北京市工程机械气体污染物排放,在获得北京市工程机械保有量、功率分布、排放阶段分布和使用强度等数据之后,通过对不同机械类别、不同排放阶段的工程机械进行PEMS排放试验获得机械排放因子,最终依据《非道路移动源大气污染物排放清单编制技术指南》中的方法,测算北京市2019年工程机械排放总量.结果显示:NOx排放因子整体呈现下降趋势,相比国I排放阶段,国Ⅱ、国Ⅲ、京Ⅳ阶段挖掘机排放因子削减比例分别为51%、65%、74%;叉车削减比例分别为29%、54%、62%;装载机削减比例分别为29%、60%、79%.CO排放因子削减比例没有显示出持续下降或上升趋势.相比国I排放阶段,国Ⅱ、国Ⅲ、京Ⅳ阶段挖掘机排放因子削减比例分别为18%、28%、21%;叉车削减比例分别为8%、12%、31%;装载机削减比例分别为52%、29%、73%.2019年北京市非道路工程机械NOx、CO、CO2的排放量分别是6 222 t、1 635 t、56.7万t.按机械类别划分,挖掘机、装载机、叉车对污染排放量贡献最大,此三种机械污染物之和在NOx、CO、CO2排放总量中占比分别达到94.7%、93.8%、95.4%.  相似文献   

5.
为了分析实际作业的叉车排放特征,基于VDI2198循环,采用车载排放测试系统(PEMS)对某基本型配备非道路国Ⅲ柴油发动机叉车进行前进、后退、货物举升、货物下降4种作业工况下的实车道路排放测试。结果表明,各排放物的排放速率在前进、货物举升和货物下降工况下处于较高水平,在后退工况下处于较低水平。CO_2、NO_x基于时间的排放因子在前进工况下最高,其原因是在前进工况下发动机处于合理转速工作区,进气充足,燃料燃烧较为充分,达到了高温富氧条件;CO、PN基于时间的排放因子在货物举升工况下最高,其原因是举升工况下发动机转速过高,进气不足、喷油量增加导致大量燃料不完全燃烧。后退工况下较低的CO_2基于时间排放因子,使得各污染物基于CO_2当量排放因子在后退工况下较高。与美国NONROAD模型中同类叉车排放水平对比,试验叉车的CO排放水平远低于Tier4A之前的排放水平,远高于Tier4排放水平;NO_x的排放水平低于Tier4A之前的排放水平,稍高于Tier4的排放水平。适度超载对排放影响较小,冷起动对排放影响较大。坡度增加对排放影响显著,坡度从0(平地)增至10%,CO、NO_x、PN、CO_2基于里程的排放因子分别增加了54%、19%、100%、27%;坡度从10%增加至15%,CO、NO_x、PN、CO_2基于里程的排放因子分别增加了41%、50%、51%、56%。  相似文献   

6.
基于燃油消耗的北京农用机械排放清单建立   总被引:5,自引:0,他引:5  
农业机械作为重要的非道路移动源之一,排放的尾气是氮氧化物(NOx)和可吸入颗粒物(PM10)的主要来源之一.介绍了基于燃油消耗量的排放清单建立方法,排放因子为单位质量燃料消耗的污染物排放量,活动水平为燃料消耗量.根据NON-ROAD模型,农用柴油机械CO、THC、NOx和PM10排放因子分别为37.71 g·kg-1、9.38 g·kg-1、51.58 g·kg-1和8.23 g·kg-1,汽油机械CO、THC、NOx和PM10排放因子分别为405.25 g·kg-1、236.05 g·kg-1、3.88 g·kg-1和5.01 g·kg-1.根据燃料消耗量估算了北京2007年农用机械尾气排放量,HC、CO、NOx和PM10排放量分别为1 643.6 t、4 615.4 t、4 296.2 t和701.6 t.与道路机动车排放量相比,农用机械排放分别占1.26%、0.50%、2.91%和4.33%.基于GIS的北京农用耕地分布,建立了农机污染物排放的空间分布.根据不同月份的燃油消耗量分析时间分布,1-2月份排放较低,3-4月份排放较高.  相似文献   

7.
首先对水泥行业产能与产量数据进行调研,对不同的工艺采用不同的CO2排放因子系统地计算了2000—2009年各点源企业水泥生产的CO2排放量,在点源企业排放量数据的基础上分析计算了各省份及全国总排放量的年度增长趋势。其次利用ARCGIS绘制了全国水泥行业排放点源年度分布图并分析了其空间分布特征,调查分析了我国水泥企业CO2排放源点源分布与变化规律,对水泥工业节能减排、发展低碳经济的工作具有重要的意义。  相似文献   

8.
以重型货运车辆为研究对象,研究车辆碳排放与车速、装载率、货运周转量等的关系。选取20辆重型货运车,通过油耗测试装置与GPS装置等采集了货运车辆连续6个月的油耗、行驶里程、平均速度、货运周转量等数据,根据碳平衡原理计算出车辆的CO2e排放因子,得出了车速与装载率分布规律。结果表明,重型货运车辆行驶速度主要分布在50~70 km/h范围内,其行驶时间占比达67.2%;0.4~0.8之间的装载率占比达到75.25%;单车月度货运周转量主要分布范围在10×104~40×104t·km;CO2e排放因子主要分布在1 000~1200 g/km,其平均值为1 120 g/km,而平均吨千米CO2e排放因子为52g/(t·km)。本研究得出了装载率与吨千米CO2e排放因子的拟合关系式,发现车速提高时CO2e排放因子降低,装载率自0.2提高到1.0时吨千米CO2e排放因子降低70%以上,货运周转量提高时吨千米CO2e排放减少。  相似文献   

9.
为了研究繁忙水域的船舶排放清单,基于船舶自识别系统(Automatic Identification System,AIS)的数据建立了针对不同船型的船舶排放计算模型。先根据AIS数据中包含的船舶尺度数据计算各类船型的发动机功率,然后运用基于AIS数据的模型计算船舶排放清单及排放分担率,最后对船舶排放的空间分布进行分析。以2010年长江口水域的船舶交通流数据为基础,计算该水域的船舶排放清单,结果表明:1)在各类船舶废气排放物中,CO2排放量最多,NOx和SOx次之,N2O最少,结果合理可信;2)各类船型的排放分担率分别为5.36%(客船)、6.59%(散货船)、51.47%(集装箱船)、15.95%(油船)、5.37%(渔船)、15.27%(其他船型);3)船舶排放聚集区主要是长江口的南、北槽航段及其附近的码头水域。  相似文献   

10.
采用CO2排放数学模型计算2000—2009年中国电力工业CO2的排放量,分析CO2排放量及排放强度的动态变化特点。结果表明,十年间中国电力工业CO2排放总量逐年增长,人均CO2排放量由2000年的231 kg增加到2009年的509 kg,平均增长14.01%。单位产品CO2排放强度由0.263 kg/(kW·h)下降到0.228 kg/(kW·h),平均下降1.56%。每万元GDP CO2排放量由295 kg下降到200 kg,平均下降3.54%。电力工业十年间实施节能降耗、资源循环利用、提高经济效益等措施,对于减少CO2排放具有明显效果。  相似文献   

11.
城市低矮街道峡谷汽车排放NOX扩散模式的初探   总被引:5,自引:0,他引:5  
通过对武汉市珞狮路路段的车流量、NOX浓度和气象要素的调查与监测,分析了珞狮路交通流量的特征,给出了源强的计算公式,并重点讨论了街道两侧环境中NOX浓度与各种影响因素之间的关系,发现城市低矮峡谷中NOX扩散不同于以往的研究结果,有其自己的特殊性。最后提出了扩散模式参数的处理方法,为建立城市低矮街道峡谷排放NOX扩散模式提供了基础。  相似文献   

12.
基于MOBILE 6.2的北京市出租车排放污染物分析   总被引:3,自引:0,他引:3  
利用MOBILE 6.2模型计算了2000年、2005年及2008年北京市出租车的排放因子,同时.计算了北京市出租车2005年更换部分旧车以及2008年更换全部旧车以后,相对于2000年污染物的降低总量.结果表明,排放污染物随更换车型大大下降.HC排放物的总量下降了1 779.4 T,CO排放物的总量下降了13 304.3 T,Nox排放物的总量下降了684.4 T.2008年完成出租车全部更换后,相对于2000年,HC排放物的总量下降3 07.9 T,CO排放物的总量下降17 483.5 T,Nox排放物的总量下降了1 211.8 T.同时,还估算了2000年和2008年其他类型机动车的排放因子及污染物的排放总量.并计算了各车型对排放的贡献率.  相似文献   

13.
上海港船舶大气污染物排放清单研究   总被引:20,自引:0,他引:20  
建立可靠的船舶排放清单不仅是大气环境科学领域对船舶排放影响进行定量研究的重要基础,也是管理部门制定污染减排措施和政策的重要依据.以常规大气污染物和温室气体为研究对象,采用由下而上的动力法对进出上海港船舶排放进行了研究.通过对上海港船舶进出签证数、船舶种类、吨位分布、运行工况、排放因子和燃油校正因子等多要素开展调查和分析,获得了上海港外港和内河9种船种和4种运行工况条件下大气污染物和温室气体排放总量,并结合船舶自动识别系统(AIS)确定了1 km×1 km网格精度的大气污染物和温室气体的排放空间分布.结果表明:2010年,上海港船舶排放PM100.46万t,PM2.5 0.37万t,柴油颗粒物(DPM)0.44万t,NOx5.73万t,SOx3.54万t,CO 0.49万t,碳氧化合物(HC)0.21万t;排放温室气体CO2 288.55万t,N2O 0.01万t,Cn4 0.004万t.与全市排放清单总量相比,上海港船舶排放对SO2、NOx和PM2.5的排放影响最为显著,分担率分别达到12.0%、9.0%和5.3%.其中,以远洋船为首要来源,其排放量对全市排放清单的分担率分别为12.0%、8.4%和5.1%.  相似文献   

14.
粉煤灰混凝土生命周期评价初步研究   总被引:1,自引:0,他引:1  
采用生命周期评价(LCA)方法评价了掺不同等级不同含量粉煤灰混凝土的环境影响.研究表明,粉煤灰的掺入可以有效减少混凝土生产过程中的煤耗、CO2、NOX、SO2以及废弃物的排放,但并不能有效减少CO、CXHY排放量.因此可认为粉煤灰混凝土是一种很好的生态材料.  相似文献   

15.
根据收集到的首都国际机场飞行区活动水平数据,采用适合估算各类移动源污染物排放量的方法和排放因子,建立了2013年首都国际机场移动源排放清单。结果表明,首都国际机场2013年移动源NO_x、CO、HC、SO2和PM_(2.5)排放总量为6 287.1 t、3 596.1 t、364.2t、373.4 t和185.0 t,分别占北京市各污染物总体排放的3.4%、0.3%、0.1%、0.4%和0.2%。其中非道路移动源是各污染物排放的最大贡献源,NO_x、CO、HC、SO2和PM_(2.5)排放量的90.7%、86.7%、79.4%、97.4%和81.3%来源于飞机,中型窄体客机及大型宽体客机贡献突出。相较而言,道路移动源排放比例较低,对HC、CO、PM_(2.5)和NO_x各污染物的贡献率为9.1%、8.6%、6.7%和4.4%。通过标准LTO循环方法估算飞机逐月排放,对LTO循环次数与各污染物排放量进行拟合,发现飞机排放的HC、CO、NO_x、SO2和LTO循环次数之间呈现较为明显的正相关关系,从而提出一种本地化的基于LTO循环次数估算飞机污染气体排放量的简单方法。此外,减少滑行时间可有效降低飞机在LTO循环过程中的污染物排放。  相似文献   

16.
关中地区人为源大气污染物排放清单研究   总被引:5,自引:0,他引:5  
首次以关中地区为研究对象,通过收集各排放源的活动水平数据,选取国内外研究中的排放因子,采用排放因子法“自上而下”建立了2011年关中地区人为源大气污染物排放清单.结果表明:2011年关中地区人为源SO2、NOx、CO、PM10、VOCs、NH3的排放量分别为400.254×103 t、342.412×103 t、2 731.302×103 t、573.193×103 t、350.523×1 03 t、323.312×103t.其中渭南是SO2、NOx、CO的主要排放城市,西安是VOCs的主要排放城市,咸阳是NH3的主要排放城市,咸阳、铜川同为PM10的主要排放城市;SO2、NOx、CO的主要排放源为工业用煤炭燃烧,VOCs的主要排放源为炼焦、涂料等工业生产过程,PM10的主要排放源为农田秸秆燃烧,NH3的主要排放源为农业化肥施用.清单的不确定性来自活动水平数据的不完善及排放因子缺乏本地特征两方面.为提高清单的可信度,将研究结果与其他排放清单进行比较,结果表明差异度较小.  相似文献   

17.
基于LMDI(Logarithmic Mean Divisia Index Method)方法分析2001-2016年京津冀地区电力部门CO2排放的8个影响因素,考虑了京津冀地区电力部门从生产投入、转换、传输到消费的整个过程;并分析了2001-2016年影响京、津、冀各地区CO2排放的各因素贡献值。结果表明,1)2001-2016年京津冀地区电力部门CO2排放总体呈现递增趋势,2012年出现负增长;河北省电力部门对京津冀电力部门CO2排放贡献最大,2001-2016年累计CO2排放变化量为145.70 Mt,但河北省电力部门的减排潜力巨大;2)人均GDP效应和人口规模效应是促进京津冀地区电力部门CO2排放增长的主要因素,2001-2016年累计贡献值分别为261.86 Mt和36.47 Mt;3)用电效率效应和电力输入输出效应是京津冀地区电力部门CO2排放量增长的主要抑制作用,2001-2016年累计贡献值分别为-49.40 Mt和-47.93 Mt;4)造成京、津、冀电力部门CO2排放差异的主要因素是人均GDP、化石能源转换效率和用电效率。  相似文献   

18.
研究了LNG-电混合动力公交车城市道路行驶排放性能。以一辆LNG-电混合动力公交车为研究对象,在典型公交线路上开展实际道路车载排放测试,通过PEMS(Portable Emissions Measurement System)和CAN总线实时采集排气污染物排放浓度、行驶速度、发动机转速和扭矩等数据。结果表明,公交车发动机运行工况主要分布在中低转速和负荷区,不同于ETC循环工况主要分布在中高转速和负荷区。计算发现公交车城市道路运行NO_x质量排放率远高于CO与HC,CO质量排放速率约为NO_x的1/100,HC质量排放速率约为NO_x的1/9。采用基于ETC循环功的功基窗口法计算发动机排气污染物比排放值,发现发动机平均输出功率偏低,测试样本功基窗口持续时间为ETC循环时长的1.4倍。测算结果表明,在全部有效功基窗口中,CO和HC比排放低于排放限值(征求意见稿),而NO_x比排放高于排放限值。研究表明,功基窗口法能有效分析LNG-电混合动力公交车排放,分析车载测试数据,得出的比排放数值能够反映车辆实际道路行驶排放水平。  相似文献   

19.
采用政府间气候变化专门委员会(IPCC)提出的方法测算了2005—2010年我国航空运输和典型航空公司CO2的排放量与排放强度。结果表明,我国航空运输和典型航空公司在CO2排放量显著上升的同时,其CO2排放强度却基本上呈逐年下降态势,而且民营航空公司春秋航空的CO2排放强度远低于东航股份等央企航空公司,也低于海航股份等地方航空公司。提出了通过提高客座率和载运率等降低吨千米油耗和优化CO2排放强度的若干措施。  相似文献   

20.
船舶速度是船舶废气排放量计算的重要影响因子。为更加准确地测度船舶废气排放量,考虑海洋环境场对船舶速度的影响,分析了风、浪、流影响下的船舶运动,利用获取的实时风、浪、流信息对船舶AIS提供的航速进行修正,在此基础上建立了风、浪、流影响下的船舶废气排放测度模型,并介绍了船舶引擎功率的估算方法,以及排放因子和负荷因子的确定。最后,选取某散货船和客滚船的两个航次,分别采用传统模型和风、浪、流影响下的船舶废气排放计算模型进行计算,以CO2排放量反推油耗,并计算其与实际油耗的误差,结果表明,与传统模型计算结果相比,基于风、浪、流影响下的船舶废气排放测度模型得到的误差均有所减小,分别减小16.90%、18.60%、21.59%、21.94%,验证了模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号