首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
在20 L爆炸实验装置中,开展了3种不同中值粒径的EVA树脂粉尘/甲烷/空气所组成的杂混物爆炸特性研究,探究了甲烷浓度对粉尘爆炸下限、最大爆炸压力的影响。结果表明,尽管添加的甲烷气体浓度低于爆炸下限,仍使得粉尘爆炸下限得以降低,粒径较大的EVA III粉尘,当甲烷体积分数为1%时,爆炸下限降低约25%;粒径较小的EVA I粉尘,当混入甲烷体积分数为4%时,爆炸下限则降低80%;甲烷体积分数每增加1%,可燃粉尘最大爆炸压力上升约10%,但对于粒径较小的EVA I粉尘,当甲烷体积分数为4%时,最大爆炸压力的上升呈现突变趋势,上升近50%。  相似文献   

2.
基于改进的20 L球粉尘爆炸试验装置,探究了酒精蒸气体积分数、烟草粉尘质量浓度及环境温度对酒精蒸气-烟草粉尘耦合体系燃爆猛度的影响规律。结果表明:加香烟草粉尘相较于烘丝烟草粉尘的爆炸压力与爆炸压力上升速率更高;酒精蒸气不仅会增强加香烟草粉尘的可燃性,而且会使其爆炸上限升高;耦合体系的酒精蒸气体积分数低于50%酒精爆炸下限(LEL)时,其爆炸压力与爆炸压力上升速率增幅较缓,而高于50%LEL时,增幅迅速攀升;升高环境温度对耦合体系燃爆猛度有明显的促进作用,在低温阶段(30~40℃)尤为显著。  相似文献   

3.
甲烷煤尘燃烧爆炸试验研究   总被引:2,自引:0,他引:2  
为揭示甲烷煤尘空气混合物爆炸波的传播规律,采用试验分析的方法,建立甲烷煤尘空气混合物燃烧爆炸的3种试验方案,分析不同体积分数的甲烷和不同质量浓度的煤尘消耗不同体积空气时的爆压和爆速等参数的发展趋势,探究爆轰波传播的稳定性,阐明了甲烷煤尘燃烧爆炸的基本特征。试验结果表明,在最优配比条件下,与单一甲烷空气、煤尘空气混合物相比,甲烷煤尘空气混合物的爆压、爆速明显增加。甲烷煤尘空气混合物爆轰比单一的气相、固相混合物爆轰的爆炸压力、爆速明显增加、爆轰更稳定。  相似文献   

4.
为研究矿井火区中一氧化碳(CO)、氢气(H_2)、乙烯(C_2H_4)和乙烷(C_2H_6)等其他可燃气体对甲烷(CH_4)爆炸特性的影响,利用可视球形气体爆炸系统开展了多元可燃气体爆炸压力特性试验,观察并分析了峰值爆炸压力、最大爆炸压力上升速率及其相应时间。通过高速摄影系统拍摄了视窗范围内爆炸火焰传播图像,基于边缘检测方法确定了火焰前锋位置,继而得到最大火焰传播速度。分析了以氢气为主要成分的其他可燃气体对低浓度CH_4-空气混合物压力特性和火焰传播行为的影响。结果表明,多元可燃气体的存在增加了低浓度CH_4-空气混合物的爆炸危险性。随混合气体体积分数增加,低浓度CH_4-空气混合物的峰值爆炸压力、最大爆炸压力上升速率和最大火焰传播速度非线性增加;此外,到达峰值爆炸压力、最大爆炸压力上升速率的时间显著缩短。  相似文献   

5.
泄压点火不同端管道内甲烷爆炸特性数值模拟   总被引:1,自引:0,他引:1  
结合气体爆炸传播机理,利用FLACS软件对泄压点火不同端两种方式(泄压口通径为25 mm和泄压口完全开放)下甲烷的爆炸过程进行数值模拟,获得了5种体积分数甲烷的爆炸特性参数,分析得出:两种不同泄压方式下,10%,9.5%,11%体积分数的甲烷爆炸特性变化趋势接近,7%,8%的甲烷较前三者有所延迟;5种甲烷在管道中心处的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值都随甲烷体积分数的增大而逐渐上升,在10%时达到最大,继续增加甲烷体积分数则出现下降趋势,最大爆炸压力时间变化趋势与其相反;管道中心处的爆炸产物浓度随着甲烷体积分数的增大而增大,与泄压方式无关;增大管道泄压口面积有利于爆炸压力以及爆炸高温高压气体的释放,使得各体积分数甲烷的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值均下降,到达最大爆炸压力的时间均增大。  相似文献   

6.
为探究密闭容器甲烷爆炸的尺寸效应及其变化特征,以及预防和控制密闭容器甲烷爆炸事故,通过改变圆柱形容器体积和管道的长度和直径,研究密闭容器甲烷-空气混合物爆炸压力变化特性;采用多元线性回归模型,分析最大爆炸压力及最大压力上升速率与管径和管长的关系。结果表明:在圆柱形容器中,最大爆炸压力上升速率随容器体积的增大而减小;随着管道内径的增加,管道末端的最大爆炸压力和最大爆炸压力上升速率均下降;管道长度增加,管道末端最大爆炸压力和最大爆炸压力上升速率均增加。试验得到最大爆炸压力及最大压力上升速率的无量纲预测模型。  相似文献   

7.
为研究叶红素干渣的爆炸特性,在对样品进行表观形态及粒径分布测试的基础上,开展了爆炸下限、最大爆炸压力和最大爆炸压力上升速率等参数的研究,并进行了热重分析。结果表明,粒径较小的叶红素干渣510B拥有更低的爆炸下限浓度;随着粉尘浓度的增加,两种样品的最大爆炸压力和最大爆炸压力上升速率曲线均呈现先升高后降低的趋势;510B在爆炸过程中的热分解反应更快、更充分,具有更高的最大爆炸压力和最大爆炸压力上升速率。  相似文献   

8.
赵飞  曹雄 《安全》2015,(4):28-30
为研究煤矿甲烷-煤尘混合爆炸的规律,采用水平管道式气体粉尘爆炸装置。试验时,通过延迟爆破系统,将储罐内的煤尘吹入管道内与甲烷气体混合,点火后甲烷爆炸产生的能量作为初始能量引起煤尘的爆炸。通过改变甲烷浓度、煤尘浓度,对甲烷-煤尘混合爆炸的最大爆炸压力和压力上升速率进行了研究。结果表明:最大爆炸压力和压力上升速率随甲烷浓度的增加先增加后减小,随煤尘浓度的增加也先增大后减小。  相似文献   

9.
为了预防或控制密闭容器内氢气爆炸事故,运用20 L密闭球形容器试验研究不同初始低压(0.025~0.1 MPa)下氢气-空气混合物的最大爆炸压力、最大压力上升速率;并采用Fluent数值模拟软件,通过标准k-ε湍流模型和概率密度函数(PDF)燃烧模型,模拟不同初始压力下氢气-空气混合物燃烧过程,直观再现不同初始压力下火焰传播过程及流场扰动状况。研究表明:氢气体积分数一定时,氢气-空气混合物的最大爆炸压力和最大压力上升速率与初始低压均成线性关系;初始压力从0.1MPa降低至0.025 MPa,最大爆炸压力降低75.1%~75.9%,最大压力上升速率降低77.1%~83.7%。另外,初始压力降低,火焰前沿到达器壁的时间变长。  相似文献   

10.
为了解尺寸对球形容器连接管道甲烷-空气混合物爆炸的影响规律,利用Fluent软件,采用κ-ε湍流模型、涡耗散模型(简称EDC模型)、壁面热耗散、热辐射模型及SIMPLE算法,建立了球形容器连接管道内甲烷-空气混合物爆炸的数值模型,对容器与管道内甲烷-空气预混气体爆炸的尺寸效应进行了数值模拟。结果表明:随管道内径增大,球形容器内最大爆炸压力逐渐增大,管道末端最大爆炸压力变化无明显规律;而随管道长度增加,球形容器内最大爆炸压力逐渐减小;改变管道内径,较大体积球形容器内最大爆炸压力均大于较小体积球形容器内最大爆炸压力,最大爆炸压力上升速率的规律则相反,容器体积对管道末端最大爆炸压力的影响无明显规律。  相似文献   

11.
为探明甲烷在不同混合均匀性下的爆炸特性,预防甲烷气体爆炸,设计由喷射流混合器和静态混合器组成的2级气体混合器,并利用自行研制的可燃气体爆炸特性测试装置,试验测试不使用和使用2级气体混合器2种情况下甲烷的爆炸极限和爆炸压力。结果表明:在2级气体混合器的作用下,甲烷的爆炸下限从5. 25%降低到5. 15%,爆炸上限从17. 15%升高到17. 55%,甲烷爆炸极限范围拓宽了4. 20%,且甲烷爆炸上限受混合均匀性的影响较大;使用2级气体混合器时,甲烷爆炸压力升高,且随着甲烷体积分数的升高,爆炸压力的增幅先增大后减小,当甲烷体积分数为11%时,爆炸压力的增幅最大,甲烷爆炸压力受混合均匀性的影响也最大。  相似文献   

12.
为研究煤尘对瓦斯爆炸特性的影响及不同浓度瓦斯-煤尘-空气混合物爆炸特征参数变化规律,对混合物建立均相湍流燃烧模型和混合物参数计算方法,采用Fortran语言对计算流体力学软件AutoReaGas进行二次开发。利用二次开发后软件研究了混合物爆炸特性,得到不同浓度瓦斯-煤尘-空气混合物爆炸规律及瓦斯-空气和瓦斯-煤尘-空气混合物爆炸特性对比。数值计算结果与试验结果吻合较好,表明该方法研究气-固两相爆炸是可行的,煤尘参与使瓦斯爆炸最大超压和最大压力上升速率分别提高1.8倍和4.7倍,反应速率明显上升。  相似文献   

13.
针对工业生产中的酚醛树脂粉尘爆炸问题,运用20 L近球形粉尘爆炸特性测试系统,测试了常温常压条件下酚醛树脂粉尘的爆炸下限、最大爆炸压力和最大压力上升速率等爆炸特征参数,分析不同质量浓度与其之间的变化规律,并计算出相应爆炸指数,对爆炸危害等级进行分级。实验结果表明,酚醛树脂粉尘云的爆炸下限质量浓度为10~20 g/m~3;最大爆炸压力、最大压力上升速率和爆炸指数关系曲线变化趋势大致相同,均呈现先升高后降低的现象,并同在200 g/m~3时达到最大值,分别为0.664 MPa,82.5 MPa/s,22.4 MPa·m/s;其粉尘爆炸危害等级为S_(t2)。  相似文献   

14.
利用20 L球形爆炸测试装置探寻甘薯粉尘在密闭空间内的爆炸特性.测得甘薯粉的爆炸下限质量浓度,研究质量浓度,粒度和点火能量对爆炸猛烈度(最大爆炸压力和最大压力上升速率)以及燃烧特续时间的影响.结果表明:粒径较小时,甘薯粉爆科较猛烈,燃烧持续时间较短;随着质量浓度的增加,燃烧持续时间减少,最大压力上升速率逐渐增大并趋于稳定,而最大爆压呈现先增后减,并且存在一个最佳浓度范围,使粉尘爆炸最猛烈;最大爆压和上升速率随点火能量的增强而增大,较强的点火能量能显著改善低质量浓度粉尘的“爆炸不良”效应.将甘薯粉的爆炸下限质量浓度爆炸猛烈度与锌粉、镁粉和烟煤粉进行对比,发现甘薯粉的爆炸风险远高于烟煤粉和锌粉.  相似文献   

15.
为深入了解超细水雾对甲烷爆炸的抑制作用,搭建小尺寸半封闭可视化试验平台并开展试验,研究超细水雾喷施量、甲烷体积分数、通入甲烷位置和预混时间4个因素对甲烷与空气的混合物的爆炸的影响。结果表明:超细水雾能有效抑制甲烷爆炸,其中对9. 5%甲烷的抑制作用最明显;随着超细水雾喷施量的增大,抑制作用增强;甲烷体积分数对甲烷爆炸最大爆炸超压ΔP_(max)有显著影响,超细水雾喷施量对甲烷爆炸ΔP_(max)有一定影响;超细水雾喷施量对甲烷爆炸火焰传播时间有显著影响,甲烷体积分数对甲烷爆炸火焰传播时间有一定影响。  相似文献   

16.
甲烷-煤尘复合体系中煤尘爆炸下限的实验研究   总被引:1,自引:0,他引:1  
在3.2 L的燃烧管道中,采用小能量的高压点火装置,通过改变甲烷体积分数、煤尘种类与粒径,研究了甲烷-煤尘复合体系中煤尘爆炸下限的变化规律.研究结果表明,在本文实验条件下,甲烷-煤尘混合物中甲烷体积分数的增加能明显降低煤尘的爆炸下限.对于煤尘粒径小于42 μm煤样A,当甲烷体积分数从1.8%增加到2.2%时,煤尘的爆炸下限相应从30 g/m3下降到6.25 g/m3.煤尘的爆炸下限也随着煤尘中挥发分含量的增加而降低.煤尘粒径对其爆炸下限的影响较弱.实验结果与文献中高能量化学药头点火的测试结果进行比较表明,甲烷对煤尘爆炸下限的影响趋势并不随着点火源能量的改变而改变.  相似文献   

17.
以石家庄某制药企业生产的7-氨基头孢烷酸(简称7-ACA)粉体为研究对象,利用20 L球型爆炸系统研究氮气抑制粉尘爆炸的规律。通过设计的混气系统向爆炸容器内充入氮气以降低容器内的氧气体积分数,创造不同氮气体积分数环境来进行一系列粉尘爆炸试验。结果表明,在化学点火能量为10 k J、7-ACA粉尘质量浓度为775g/m3时,爆炸压力达到最大值。在该粉尘质量浓度条件下,随氮气充入量增加,其最大爆炸压力逐渐降低;当氧气体积分数达10.93%时,测试系统显示7-ACA粉尘不发生爆炸;继续充入氮气,也没有发生爆炸现象,表明抑爆效果明显。  相似文献   

18.
研究了环境温度对萘酐(C10H6O2)粉尘爆炸参数的影响,得到了随着温度的升高,最大爆炸压力峰值变化不大;而最大压力上升速率增大,爆炸下限浓度降低,安全氧含量也会降低.根据化学动力学理论对这一影响进行了分析.  相似文献   

19.
为减少乙炔火灾爆炸事故的发生,采用20 L爆炸罐为试验仪器,对常温、初始压力0.1 MPa条件下,不同体积配比乙炔-空气混合气的燃爆特性及氮气对乙炔分解爆炸的影响进行了试验研究,并结合碰撞理论和燃烧反应方程对试验结果进行了理论分析。结果表明:乙炔-空气混合气体随乙炔体积分数增大,最大爆炸压力逐渐升高;在乙炔体积分数为10%~55%范围内,乙炔与空气混合气的最大爆炸压力恒定在1.7 MPa,乙炔体积分数为10%时取得最大爆炸指数(78.14MPa.m/s);乙炔体积分数为55%~100%范围内,混合气体爆炸与初始压力有关,并且初始压力随乙炔体积分数增大而升高;纯乙炔分解爆炸的初始压力为0.18 MPa。氮气对乙炔分解爆炸有一定的抑制作用,并随氮气体积分数增加,抑制作用逐渐增大。  相似文献   

20.
为探究丙烷对甲烷爆炸的影响,通过试验研究不同体积分数丙烷对甲烷爆炸特性的影响特征,利用CHEMKIN-PRO软件模拟丙烷影响甲烷爆炸过程中自由基变化特征。结果表明,随着丙烷体积分数的增大,丙烷对甲烷爆炸呈现出先促进后抑制的作用。当丙烷体积分数为0.2%~0.6%时,促进甲烷爆炸;当丙烷体积分数为0.8%~1.0%时,抑制甲烷爆炸。在丙烷促进甲烷爆炸阶段,丙烷通过均裂反应生成·C2H5和·CH3,·CH3增大·H、·O、·OH的生成速率,导致爆炸强度增强;在丙烷抑制甲烷爆炸阶段,随着丙烷体积分数的持续增加,O2体积分数降低,·O生成速率降低,·H、·OH生成速率降低,导致爆炸强度减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号