首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed.Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.  相似文献   

2.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.  相似文献   

3.
Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant.  相似文献   

4.
To recycle polyurethane foam waste generated from electric appliance recycling centers for use as fuel in a gasification process, polyurethane solid refuse fuel fabricated as pellets was analyzed for the characteristics of elemental composition, proximate analysis, heating value, and thermo-gravimetric testing. It has a high heating value of 29.06 MJ/kg with a high content of combustibles, which could be feasibly used in any thermal process. However, the nitrogen content, of up to 7 %, was comparably higher than for other fuels such as coal, biomass, and refuse-derived fuel, and may result in the emission of nitrogenous pollutant gases of HCN and NH3. By conducting gasification experiments on polyurethane solid refuse fuel in a fixed-bed reactor, a syngas with a heating value of 9.76 kJ/m3 and high content of both H2 and CO were produced with good gasification efficiency; carbon conversion 54 %, and cold gas efficiency 60 %. The nitrogenous pollutant gases in syngas were measured at the concentrations of 160 ppm hydrogen cyanide and 40 ppm ammonia, which may have to be reduced using proper cleaning technologies prior to the commercialization of gasification technology for polyurethane waste.  相似文献   

5.
Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidised bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler (and, in the longer term, in an engine or gas turbine) without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Grève-in-Chianti, Italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day. It is planned that the complete TPS gasification process (including the complete fuel gas cleaning system) be demonstrated in several gas turbine-based biomass-fuelled power generating plants in different parts of the world. It is the aim of TPS to prove, at commercial scale, the technical feasibility and economic advantages of the gasification process when it is applied to solid waste fuels. This aim shall be achieved, in the short-term, by employing the cold clean product gas in a gas boiler and, in the longer-term, by firing the gas in engines and gas turbines. A study for a 90 MWth waste-fuelled co-generation plant in Sweden has shown that, already today, gasification of solid waste can compete economically with conventional incineration technologies.  相似文献   

6.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

7.
Emissions of sulphur and oxidized nitrogen compounds in Europe have been reduced following a series of control measures during the last two decades. These changes have taken place during a period in which the primary gases and the wet deposition throughout Europe were extensively monitored. Since the end of the 1970s, for example land based sulphur emissions declined by between 90 and 70% depending on the region. Over the same period the total deposition of sulphur and its partitioning into wet and dry deposition have declined, but the spatial pattern in the reduction in deposition differs from that of emission and has changed with time. Such non-linearities in the emission-deposition relationship are important to understand as they complicate the process of assessing the effects of emission reduction strategies. Observed non-linearities in terrestrial sulphur emission-deposition patterns have been identified in north west Europe due to increases in marine emissions, and are currently slowing the recovery of freshwater ecosystems. Changes in the relative amounts of SO2 and NH3 in air over the last two decades have also changed the affinity of terrestrial surfaces for SO2 and have therefore changed the deposition velocity of SO2 over substantial areas. The consequence of this effect has been the very rapid reduction in ambient SO2 concentration in some of the major source areas of Europe, where NH3 did not change much. Interactions between the different pollutants, generating non-linearities are now being incorporated in long-range transport models to simulate the effects of historical emission trends and to provide projections into the future. This paper identifies non-linearities in emission deposition relationships for sulphur and nitrogen compounds in Europe using data from the EMEP long-rang transport model and measured concentration fields of the major ions in precipitation and of SO2 and NO2 in surface air.  相似文献   

8.
A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kWth. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 °C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm3), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 °C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.  相似文献   

9.
Geochemical, mineralogical and sedimentological analyses were carried out to contrast two different sites (respectively characterized by permanently oxic and anoxic conditions) in a small, meromictic, seawater lake. In fact, due to relatively high organic matter content, and reduced water exchange, the Rogoznica Lake has almost permanent anoxic conditions below the depth of 12 m, where sediment can be considered an anoxic–sulphidic sedimentary environment. Different water column and sediments redox conditions affect the distribution and speciation of major redox-sensitive metals (Fe, Mn, Mo), reduced sulphur species (RSS) and dissolved organic C (DOC). Trace metals, especially those that accumulate in anoxic–sulphidic environments (Fe, Mo) showed a marked enrichment in the solid phase, whereas the low solubility of sulphides leads to low porewater concentrations. The relatively high sedimentary enrichment of Mo (up to 81 mg/kg) also confirms highly anoxic conditions within the Rogoznica Lake sediments. Results clearly show that chemical species within the sediments will tend towards equilibrium between porewater and solid phase according the prevailing environment conditions such as redox, pH, salinity, DOC.  相似文献   

10.
The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H2S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved.Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell.  相似文献   

11.
This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction.  相似文献   

12.
The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. All experiments were carried out in a vertical stainless steel gasification reactor at 800 °C. Crushed calcined dolomite was used as the gasification catalyst. Parameters such as addition of water and air, and the influence of the catalyst in regard to the composition of the process gas were investigated. The catalytic gasification experiment in the steady state produced process gas with the composition: 56 % of H2, 9 % of CO, 11 % of CH4 and 12 % of CO2 (mol.%). Concentration of the C2 fraction was lower than 1 mol.%. Volume flow of air was later changed from 120 to 230 ml min?1 reducing the amount of hydrogen to 51 mol.% and that of methane to 10 mol.%. Process gas created in a non-catalytic gasification process contained 26–30 mol.% of methane, 13–15 mol.% of carbon monoxide and 15–17 mol.% of the C2 fraction and lower amounts of hydrogen (20 mol.%) and carbon dioxide (2–3 mol.%). The highest apparent conversion of tar was reached in the catalytic gasification processes. A higher rate of catalyst deactivation can be observed when water or air is not added.  相似文献   

13.
This work reports the effect of pressure on the steam/oxygen gasification at 1000 °C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank.In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34 MJ kg−1. The combustion properties of the char (EA ≈ 50 kJ mol−1), its temperature of self-heating (≈264 °C), ignition temperature (≈459 °C) and burn-out temperature (≈676 °C) were found to be similar to those of a semi-anthracite.It is observed that the yield, H2 and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm3 kgchar−1 of syngas was produced, containing 28% v/v of H2 and CO and with a HHV around 3.7 MJ Nm−3. At 1.5 MPa, the syngas yield achieved 4.9 Nm3 kgchar−1 with 30% v/v of H2-CO and HHV of 4.1 MJ Nm−3. Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa.It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure.  相似文献   

14.
In the present work, a shaft-type furnace model in which the furnace column is divided into multiple cells was proposed and equilibrium reaction calculation software was used to describe the model. The model was used to study the effects of gasification and melting conditions such as temperature, oxygen partial pressure, and chlorine content on the volatilization behaviors of the low-boiling-point metals Na, K, Pb, and Zn during the gasification and melting process of municipal solid waste in a shaft-type furnace. Consequently, the volatilization ratios of Na, K, Pb, and Zn compounds in the exhaust gas from a pilot plant shaft-type furnace were found to be in good agreement with the calculation results, and the Na, K, Pb, and Zn compounds were volatilized mainly as metal chlorides in the temperature range up to approximately 1173 K. With a further rise in temperature, these low-boiling point metals were volatilized as metallic forms. It was found that almost 100% of Pb and Zn compounds were volatilized regardless of the chlorine content in municipal solid waste; in contrast, the volatilization rates of Na and K increased when the chlorine content increased. Finally, Na, K, Pb, and Zn compounds were converted from reduced metals to metal chlorides such as NaCl, KCl, PbCl2, and ZnCl2 with an increase in the ratio of chlorine to each metal.  相似文献   

15.
气化炉渣的重金属浸出特性及化学形态分析   总被引:2,自引:0,他引:2       下载免费PDF全文
分别采用硫酸硝酸法、水平振荡法和醋酸缓冲溶液法制取气化炉渣的浸出液,考察了不同提取方式对浸出液中重金属质量浓度的影响。采用改进BCR连续提取法对气化炉渣中的重金属Cr,Zn,Cu,Pb,Ni,As,Cd的化学形态进行了分析。实验结果表明:煤气化工艺中的气化炉渣属第Ⅰ类一般工业固体废物;在3种提取方式中,醋酸缓冲溶液法的重金属浸出种类最多,且浸出量最大;Cd和Cr对环境具有较高的潜在危害性,Cu次之,Zn,Pb,Ni,As主要以残渣态形式存在,对环境的直接危害性较低。  相似文献   

16.
The gas products from gasification processes have been considered to have some limitations in gas composition and heating value from the previous studies. Gasification characteristics of sewage sludge and wood mixture were investigated using different mixing ratios with the purpose of better quality of gas product suitable for energy/power generation. The gasification experiment was performed by an indirectly heated fluidized bed reactor. As reaction temperature increased from 600 to 900 °C, the yield of gas product increased with higher generation of CO, H2 and CH4 by more activated gas conversion reactions. As the equivalence ratio increased from 0.2 to 0.4, composition ratio of CO2 increased while CO, CH4, H2 decreased as expected. Several operating variables including mixing ratio of wood with dried sludge were also tested. From this initial stage of experiment, optimal operating conditions for the bubbling fluidized bed gasifier, could be considered 900 °C in temperature; 0.2 in equivalence ratio and 40 % in wood mixing ratio within test variables range. These results will be more thoroughly investigated for the application to the larger scale pilot system.  相似文献   

17.
Energy from gasification of solid wastes   总被引:4,自引:0,他引:4  
Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.  相似文献   

18.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

19.
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components – a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.  相似文献   

20.
The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号