首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高迪  王增长 《化工环保》2012,32(4):351-353
采用催化超临界水氧化技术处理焦化废水.实验结果表明:升高反应温度、增加反应压力、延长反应时间可提高废水中氨氮去除率;在反应时间为60 s、反应压力为30 MPa、反应温度为460℃的最佳实验条件下,未加入催化剂时的氨氮去除率为53.7%,加入催化剂后,氨氮去除率大幅提高,以MnO2为催化剂时氨氮去除率为86.9%,以CuSO4为催化剂时氨氮去除率为92.4%.  相似文献   

2.
针对乙烯碱渣废水高盐、高COD的特点,采用低氧生物反应器开展脱氮除碳研究。实验结果表明:在反应器好氧区DO为0.5~1.0 mg/L,缺氧区DO为0.2~0.4 mg/L,好氧区HRT为15.3 h,缺氧区HRT为9.2 h,沉降区HRT为6 h的条件下,当进水TDS小于16 000 mg/L、COD为166~1 520 mg/L、氨氮质量浓度为8.4~32.6 mg/L、TN为10.4~33.8 mg/L时,处理后出水平均COD去除率为87.6%,平均氨氮去除率为90.7%,平均TN去除率为86.3%;当进水TDS升高至18 120 mg/L时,COD去除率不受影响,平均COD去除率为89.7%,随着运行时间的延长,硝化细菌逐渐受到抑制,20 d后,氨氮去除率由80.3%逐渐降低至57.5%,TN去除率由75.2%降低至51.4%;TDS对废水中石油类污染物的去除影响不大,运行期间,其去除率保持在90%以上。  相似文献   

3.
活性炭催化臭氧氧化处理低浓度氨氮废水   总被引:1,自引:0,他引:1  
采用活性炭催化臭氧氧化法处理低浓度氨氮废水,考察了模拟废水pH、活性炭加入量、臭氧流量等因素对处理效果的影响.实验结果表明:活性炭对臭氧有明显的催化作用,并可提高臭氧的利用率;在高pH条件下,OH-能促进臭氧分解生成·OH,·OH氧化性强且反应速率快,有利于氨氮的去除;增大臭氧流量可减小气液传质过程中的阻力,使氨氮去除率增加;在初始氨氮质量浓度为35 mg/L、活性炭加入量为10.0 g/L、臭氧流量为30 mg/min、模拟废水pH为11.0的条件下,反应90 min后,氨氮去除率可达97.6%,相对于单独活性炭吸附和臭氧氧化过程,氨氮去除率有了显著提高.  相似文献   

4.
采用混凝—热固化联合空气吹脱法处理高浓度水性油墨废水。混凝—热固化法处理高浓度水性油墨废水的优化工艺条件为混凝剂NS-1投加量7.36 g/L,热固化温度75 ℃,热固化时间30 min,在此条件下COD去除率达91.00%,色度去除率达99.00%。空气吹脱法处理混凝—热固化出水,初始ρ(氨氮)对氨氮去除率影响较小;气液比增大、废水pH升高、吹脱次数增加、废水温度升高均能提高氨氮去除率。在废水初始ρ(氨氮)为1 406.25 mg/L、气液比为2 667、废水pH为11.50、废水温度为25 ℃、连续吹脱4次的条件下,氨氮去除率达95.34%。  相似文献   

5.
赵新 《化工环保》2011,31(5):444-446
根据炼油厂废水水质情况,利用现有装置和条件,通过改进工艺,重点控制生物硝化条件,达到降低出水氨氮质量浓度、废水达标排放的要求.将均质池做为曝气池前有机物的预处理装置,曝气池进水COD 可由420 mg/L 降至322 mg/L,平均COD 去除率为23.3%.在均质池和接触氧化池的进水处投加NaOH 溶液,使系统pH ...  相似文献   

6.
煤矸石的改性及其对稀土生产废水中氨氮的吸附   总被引:1,自引:0,他引:1  
采用热改性、盐酸改性、硫酸改性、碱改性的方法分别制备了4种改性煤矸石吸附剂,研究了吸附工艺条件对4种改性煤矸石吸附剂对稀土生产废水中氨氮去除效果的影响以及吸附机理.实验结果表明:4种改性煤矸石吸附剂吸附氨氮的最佳工艺条件为:吸附剂加入量0.02 g/mL,振荡时间2.5 h,废水pH 7~8;4种吸附剂氨氮去除率大小顺序为:碱改性煤矸石>硫酸改性煤矸石>盐酸改性煤矸石>热改性煤矸石;碱改性煤矸石的氨氮去除率最高,为59.19%;碱改性煤矸石吸附剂对含氨废水中氨氮的吸附较好地符合Langmuir方程和Freundlich方程,在一定程度上符合Temkin方程.  相似文献   

7.
根据某天然橡胶加工企业生产废水的水质特点,采用EGSB-CASS-生物滤池工艺处理天然橡胶加工废水。工程运行结果表明,该工艺对CODCr、氨氮、SS平均去除率分别达到97%,94%,90%,出水水质符合GB8978-1996《污水综合排放标准》一级标准。  相似文献   

8.
亚硝化细菌的筛选及培养条件的研究   总被引:1,自引:0,他引:1  
张辉  李培军  胡筱敏  王新 《化工环保》2006,26(5):366-369
从活性污泥中分离出16株亚硝化细菌,筛选出亚硝酸盐氮积累速率较高的两株菌Y8和Y16,初步鉴定Y8菌株为亚硝化球菌(Nitrosococcns.sp),Y16菌株为亚硝化单胞菌(Nitrosomonas.sp),并对其生长曲线进行了测定。通过氨氮去除率或业硝酸盐氮的质量浓度来验证亚硝化细菌的活性,考察了生成的亚硝酸盐氮的质量浓度与培养时间的关系、亚硝化细菌的活性与培养温度的关系、亚硝化细菌的活性与培养基pH的关系。Y8和Y16菌株在30℃、培养基pH为7.5、130r/min的条件下振荡培养5d,氨氮去除率分别为81.12%,75.36%。  相似文献   

9.
生化法处理炼油废水中氨氮降解的工业试验   总被引:6,自引:1,他引:5  
张冬梅 《化工环保》2000,20(5):46-49
茂名石化公司炼油厂废水生化处理原采用生物滤塔与活性污泥曝气池相结合的工艺,由于曝气池进水COD高,硝化菌无法生长,氨氮去除率低,出水氨氮不能达标.1998年底完工的废水处理改扩建工程,采用生物接触氧化池与活性污泥池联合工艺,并对气浮段絮凝技术加以改造,使废水生化处理中氨氮的硝化处理获得成功,从而使废水排放各指标均达到茂名市废水排放标准(DB44/56-92)中的二级标准.  相似文献   

10.
采用膨胀颗粒污泥床(EGSB)-接触氧化工艺处理棕榈油废水。考察了该工艺对废水COD、固体悬浮物(SS)、有机氮等的去除效果,关键工艺参数,同时探讨了盐浓度对废水生物处理效果的影响。实验结果表明,该组合工艺COD去除率高于95%,BOD,和SS去除率均高于98%,油脂去除率高于90%,有机氮去除率82%,处理后的出水满足马来西亚回灌水国家标准。因出水中含大量的钾,将其用于农田灌溉时,不仅可减少肥料的用量,而且可减少对环境的污染。  相似文献   

11.
冀云  赵远  董向阳  王霞  操林海  刘钰 《化工环保》2019,39(2):153-157
在中试吹脱装置上,通过投加低浓度促脱剂协同传统吹脱法处理高氨氮工业废水(氨氮质量浓度2 369~3 600 mg/L)。结果表明:在相同处理条件下,阴离子促脱剂的氨氮去除效果优于阳离子促脱剂,且促脱剂的碳数越高越有利于氨氮的去除;废水处理的最佳工艺条件为废水pH 12.0、废水温度50℃、吹脱时间5 h、促脱剂投加量25 mg/L、气液比600∶1;该条件下,以木质素磺酸钠为促脱剂协同吹脱法处理高氨氮废水,氨氮去除率可达99%以上,高于传统吹脱法20个百分点以上。  相似文献   

12.
采用超声吹脱—吸附工艺处理高浓度氨氮废水。在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响。实验结果表明:超声吸附处理废水的优化工艺条件为沸石粒度0.198~0.245 mm、吸附时间60 min、沸石投加量4 g/L、吸附pH 7.0、吸附温度30 ℃、吸附超声功率100 W;在该条件下,超声吹脱—吸附工艺的总氨氮去除率可达77.39%,较单独超声吹脱工艺的41.98%大幅提高。  相似文献   

13.
李昂  刘锋  陈天羽  冯震 《化工环保》2012,40(5):494-500
采用基于固态碳源的厌氧氨氧化与反硝化耦合脱氮工艺处理高氮低碳的金属热处理废水。通过接种城市生活污水处理厂剩余污泥和厌氧氨氧化絮状污泥,研究了以固态碳源(3-羟基丁酸脂和3-羟基戊酸脂共聚物,PHBV)和沸石为组合填料的分区式耦合反应器的启动和运行特性。经过76 d的运行,耦合反应器的总氮去除速率达1.05 kg/(m3·d),且具有良好的出水COD稳定性。废水经过反应器沸石区后,氨氮去除率达97%,亚硝态氮去除率达81%,而硝态氮去除率几乎为零;经过PHBV区后,硝态氮去除率达76%,亚硝态氮去除率达99%,氨氮去除率达97%。沸石区主要进行厌氧氨氧化反应,PHBV区主要进行反硝化反应,功能分区明确,耦合效果较好。  相似文献   

14.
氮气气提法去除油田废水中的H2S   总被引:1,自引:0,他引:1  
杨向平  曲虎  刘静 《化工环保》2012,32(1):35-38
以氮气为载气,采用气提法去除油田废水中的H2S.实验结果表明,氮气气提法去除油田废水中的H2S效果显著,在水浴温度为45℃、氮气流量为3 L/min、通气时间为30min、油田废水pH为5.0的条件下,废水中H2S的去除率可达98%以上,升高水浴温度和降低废水中的含油量有助于提高H2S去除率.经氮气气提法处理后废水pH提高到7.5,碳钢的腐蚀速率降至0.02 mm/a,废水达到SY/T5329-1994《碎屑岩油藏注水水质推荐指标及分析方法》的指标.  相似文献   

15.
气升式环流生物反应器处理废水厌氧过程研究   总被引:2,自引:1,他引:1  
采用气升式环流生物反应器处理模拟废水。周期性通入空气和氮气来实现厌氧一好氧交替过程。对厌氧一好氧过程和普通好氧过程进行了对比,研究了厌氧处理时间和曝气速率对生物除磷效果的影响。结果表明,厌氧过程可以显著地增强生物除磷效果,与普通好氧过程相比,在进水总磷质量浓度为10mg/L时,磷的去除率可以提高30%,而COD的去除基本不受影响;适当延长厌氧处理时间和适当增大厌氧过程曝气速率可以改善厌氧环境及活性污泥性能,提高磷的去除率。  相似文献   

16.
陈昕 《化工环保》2014,34(2):128-132
采用加入淀粉的短程硝化-反硝化一体化技术处理低碳含NH3-N催化剂废水。通过中试确定了适宜的工艺参数,并在工业化装置上进行了验证。试验结果表明:在DO为0.5 mg/L左右、淀粉加入量为0.25 kg/ m3、HRT=30 h的条件下,短程硝化-反硝化一体化技术具有较好的处理效果,NH3-N去除率大于97%,且具有较强的抗冲击负荷的能力; 出水的COD<100 mg/L,ρ(NH3-N)<10 mg/L,达到GB 8978—1996《污水综合排放标准》的一级排放标准。工业化装置的运行费用以NH3-N计为2.3 元/kg、以废水计为4.6 元/t。该法适用于中低浓度(ρ(NH3-N)<300 mg/L)废水的处理。  相似文献   

17.
高会杰  孙丹凤 《化工环保》2014,34(4):336-339
采用氨化—硝化—反硝化三段联合生物工艺处理分子筛催化剂生产过程中产生的含有机胺废水。实验结果表明:在氨化过程中,当进水COD稳定为1 200~1 600 mg/L时,出水COD低于300 mg/L,COD去除率稳定在80%左右,当进水ρ(有机氮)为100~160 mg/L时,出水ρ(有机氮)均低于30 mg/L,有机氮去除率大于80%,在整个氨化过程中,出水ρ(氨氮)较进水ρ(氨氮)提高了35~200 mg/L;硝化过程中,当进水ρ(氨氮)小于等于300 mg/L时,出水ρ(氨氮)最终稳定在15 mg/L以内,氨氮去除率大于90%;在反硝化过程中,亚硝酸盐氮去除率基本稳定在98%以上,最终出水COD低于80 mg/L,出水ρ(总氮)低于25 mg/L。  相似文献   

18.
采用十六烷基三甲基溴化铵(HDTMA)溶液和LaCl3溶液对人造沸石进行改性,以实现其对废水的同步脱氮除磷。通过正交试验确定了改性沸石制备的最佳条件,并运用SEM、BET、EDS、FTIR、XRD和TG技术对改性沸石进行了表征。实验结果表明:改性可提高人造沸石对废水中氨氮(NH4+-N)和总磷(TP)的去除率;改性沸石制备的最佳条件为HDTMA质量浓度12 g/L、LaCl3质量浓度9 g/L、HDTMA溶液和LaCl3溶液的体积比1∶5,固液比1∶90;采用该条件下制备的改性沸石吸附处理NH4+-N和TP的质量浓度分别为23.78 mg/L和11.78 mg/L的废水,NH4+-N和TP的去除率分别达96.88%和95.12%。表征结果显示,改性后,HDTMA和LaCl3有效负载于人造沸石表面,且未改变人造沸石的基本骨架。  相似文献   

19.
超声辐照去除焦化废水中的氨氮   总被引:7,自引:0,他引:7  
采用超声辐照去除焦化废水中的氨氮,在废水初始pH为8~9、氨氮初始质量浓度为121mg/L、饱和气体同时曝气同时超声的作用方式下对氨氮去除效果最佳。通过测定自由基清除剂对氨氮去除过程的影响和氨氮的转化形态,提出了超声去除氨氮的作用机理可能是溶液中的氨分子进入空化泡内进行高温热解反应最终转化成氮气和氢气的过程。  相似文献   

20.
电凝聚-气浮法处理印染废水   总被引:1,自引:0,他引:1  
采用电凝聚-气浮法处理模拟印染废水(简称废水),考察了废水pH、电解电流、电解时间对废水COD去除率的影响。实验结果表明,当废水pH=6.5、电解电流为1.0A、电解时间为25min时,废水COD去除率可达90%以上。该方法具有较宽的操作范围,电解电流为1.0~1.9A,废水COD去除率相差不大;废水pH为3.45~11.46,废水COD去除率均可达80%以上。电凝聚-气浮法处理印染废水无需外加药剂,无二次污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号