首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
In this study, we performed the facile preparation of chitin/cellulose composite films using two ionic liquids, 1-allyl-3-methylimidazolium bromide (AMIMBr) and 1-butyl-3-methylimidazolium chloride (BMIMCl); the former dissolves chitin and the latter dissolves cellulose. First, solutions of chitin in AMIMBr and cellulose in BMIMCl were individually prepared by heating each mixture at 100 °C for 24 h. Then, the homogeneous mixture of the two solutions was thinly casted on a glass plate, followed by standing at room temperature for 2 h. After the material was subjected to successive Soxhlet extractions with ethanol for 12 h and with water for 12 h, the residue was dried at room temperature to give a composite film. The crystalline structures of the polysaccharides were evaluated by the X-ray diffraction measurement. Furthermore, the thermal stability and mechanical property of the resulting composite film were estimated by the thermal gravimetric analysis measurement and tensile testing, respectively.  相似文献   

2.
This paper reports the preparation of galactomannan/ionic liquid composite materials from the corresponding ion gels. Three kinds of galactomannans, that is, fenugreek gum (FG), guar gum (GG), and locust bean gum (LBG) and an ionic liquid of 1-butyl-3-methylimidazolium chloride (BMIMCl) were used. When the galactomannan/BMIMCl gels were immersed in ethanol, followed by dryness under reduced pressure, the galactomannan/BMIMCl composite materials were obtained. The crystalline structures of galactomannans in the materials were evaluated by the powder X-ray diffraction measurement. The mechanical property of the FG/BMIMCl composite material under compressive mode was superior compared with the GG and LBG/BMIMCl composite materials. Then, FG films compatibilized with polymeric ionic liquids (PILs) were also prepared by in situ radical polymerization of polymerizable ionic liquids, 1-(3-acryloyloxypropyl)-3-vinylimidazolium bromide and 1-methyl-3-vinylbenzylimidazolium chloride by AIBN in mixtures of FG with BMIMCl. The mechanical properties of the resulting films were affected by the FG/PIL ratios as well as the unit ratios in PILs.  相似文献   

3.
This paper reports the preparation of cellulose/xanthan gum composite films and hydrogels through gelation with an ionic liquid. Mixtures of cellulose and xanthan gum in desired weight ratios with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), were thinly placed on a Petri dish and heated at 100 °C for 9 h to obtain the solutions. Then, the solutions were left standing at room temperature for 1 day for the progress of gelation. The resulting ion gels were subjected to Soxhlet extraction with ethanol to remove BMIMCl, followed by drying under ambient conditions to obtain the composite films. The crystalline structures of the polysaccharides and the mechanical properties were evaluated by powder X-ray diffraction measurement and tensile testing of the films, respectively. The ion gels in various cellulose/xanthan gum weight ratios, which were prepared in a test tube by the same procedure, were immersed in water for the exchange of disperse media to obtain the cellulose/xanthan gum composite hydrogels. Water contents of all the materials were higher than 90 %. The mechanical properties of the hydrogels were evaluated by compressive testing.  相似文献   

4.
The overall mechanical behaviour of a series of experimental Mater-Bi made thin low-tunnel films is analysed with respect to the effect of two major factors: the film processing optimisation during manufacturing and the design of the low-tunnels structural system. The analysis of the mechanical behaviour of the biodegradable low-tunnel films, based on the results of extensive full-scale and small-scale experiments, combined with laboratory testing of the mechanical properties of the film, proves that a rather good mechanical behaviour is possible for these films, comparable to the behaviour of conventional agricultural films in terms of strength, provided that two criteria are met: (a) the low tunnel structural design is based on the initial stress at yield value of the film, which represents the asymptotic value of the tensile strength of the film, following its evolution with the time of exposure to real field conditions; (b) the processing of the film is optimised for the particular biodegradable material and film thickness under consideration. It is also confirmed that the stabilisation schemes used with conventional polyethylene films are not suitable for the biodegradable films.
D. BriassoulisEmail: Phone: +30-210-529-4011Fax: +30-210-529-4023
  相似文献   

5.
Cellulose gel films were prepared by regeneration process using pre-cooled aq.(8 wt% LiOH + 15 wt% urea) mixture as solvent and ethyl alcohol as non solvent. The Terminus cattapa leaf extract diffused wet cellulose films were then dipped in 1–5 mM aq.AgNO3 solutions to allow in situ generation of silver nanoparticles (AgNPs). Besides the in situ generation, some AgNPs were also formed outside the wet films in the solution. The AgNPs formed outside the films were observed under transmission electron microscope and scanning electron microscope. The nanocomposite films were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis and tensile test. The thermal stability of the composite films was lower than that of the matrix up to a temperature of ~300 °C and afterwards showed a reverse trend. The tensile strength of the nanocomposite films was found to be higher than the matrix but decreased with increasing concentration of aq.AgNO3. The cellulose/AgNPs composite films showed good antibacterial activity against E. coli (gram positive) and Bacillus sp. (gram negative). Based on the aforementioned properties, the cellulose/AgNPs composite films can be considered for antibacterial packaging and medical applications.  相似文献   

6.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   

7.
Life cycle analysis (LCA) of limonene plasticized poly(lactic acid) (PLA) films containing cellulose nanocrystals (CNC) extracted, by acid hydrolysis, from Phormium tenax leaf fibres, was assessed and compared with the results of acetyl tributyl citrate (ATBC) plasticized PLA films, having equivalent mechanical properties, containing organo-modified montmorillonite (OMMT). Eco-Indicator 99 tool has been adopted as the main method for life cycle assessment. Results indicated that, despite CNC are biobased fillers obtained by natural sources, the related chemical extraction leads to a large environmental footprint and a relatively relevant energy expense. LCA characterization of these films demonstrated that the environmental impact of PLA/limonene film reinforced with 1% in weight of CNC (PLA/CNC/limonene) is comparable to the environmental impact of polylactic acid films reinforced with OMMT and plasticized with a petroleum based plasticizer (ATBC) (PLA/OMTT/ATBC). A “cradle to gate” approach has been considered for both the film typologies.  相似文献   

8.
Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of polysaccharide products (e.g. viscose or natural fibre polymer composites) in comparison with their conventional counterparts (e.g. cotton or petrochemical polymers). The application areas covered are textiles, engineering materials and packing. It is found that for each stage of the life cycle (production, use phase and waste management) polysaccharide-based end products show better environmental profiles than their conventional counterparts in terms of non-renewable energy use (NREU) and greenhouse gas (GHG) emissions. Cotton is an exception, with high environmental impacts that are related to the use of fertilisers, herbicides, pesticides and high water consumption. The available literature for man-made cellulose fibres shows that they allow to reduce NREU and GHG emissions in the fibre production phase. No study has been found for the fabric production and the use phase of man-made cellulose textiles.
Martin K. PatelEmail:
  相似文献   

9.
The bioactive packaging polyvinyl alcohol (PVA)/starch films were prepared by incorporating combined antioxidant agents i.e. extracted spent coffee ground (ex-SCG) and citric acid. Effect of citric acid content on chemical compatibility, releasing of antioxidant, antibacterial activities, and physical and mechanical properties of PVA/starch incorporated ex-SCG (PSt-E) films was studied. The results of ATR-FTIR spectra showed that antioxidant agents of ex-SCG can penetrate into the film and the ester bond of blended films by citric acid was also observed. The presence of ex-SCG increased efficiency of antioxidant release and antimicrobial activity. The PSt-E film incorporated 30 wt% citric acid showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The incorporation of ex-SCG and citric acid into film showed a synergistic effect on antibacterial activity. The water resistance and kinetic moisture sorption improved with incorporation of citric acid. The tensile strength and biodegradability of samples were in range of 5.63–7.44 MPa and 65.28–86.64%, respectively. Based on this study, PSt-E film incorporated 30 wt% citric acid can be applied as novel food packaging materials.  相似文献   

10.
Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8?±?3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29?±?0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.  相似文献   

11.
We intended to find thermophilic degraders of terephthalate-containing Biomax® films. Films in mesh bags were buried in composts (inside temperature: approximately 55–60 °C), resulting in the degradation of them in 2 weeks. Fluorescent microscopy of films recovered from composts showed that microorganisms gradually covered the surface of a film during composting. DGGE analysis of microorganisms on the composted film indicated the presence of Bacillus species as main species (approximately 80% of microbial flora) and actinomycetes (approximately 10–20%) as the second major flora. Isolation of Biomax®-utilizing bacteria was focused on these two genera: two actinomycetes and one Bacillus species were isolated as pure best degraders from the composted polymer films, which were fragmented into small pieces. All the strains were thermophilic and identified, based on their 16S rDNA analyses. Degradation of polymer films was confirmed by (1) accelerated fragmentation of films in composts, compared with a control (no inoculum) and resultant decrease in molecular weights, (2) growth in a powdered Biomax® medium, compared with a control without powdered Biomax®, and (3) production of terephthalate in a powdered Biomax® medium. In this way, we concluded that these bacteria were useful for degradation of thermostable Biomax® products.  相似文献   

12.

Nowadays, the importance of green and biodegradable plastics as viable substitutes for non-degradable petroleum-based materials is felt more than ever. Regenerated cellulose (RC) as a potential candidate suffers from poor processability and inferior properties, limiting its wide applications. In this study, it is demonstrated that citric acid (CA) enhances physical, mechanical, and thermal properties of RC films, due to RC-citric acid compatibility. 1-ethyl-3-methylimidazolium chloride (EMIMCl) as a green ionic liquid was employed for the processing of RC. The optimum properties in terms of thermal stability, mechanical strength, contact angle, water uptake, and oxygen permeability were achieved at 10 wt% of CA. However, further incorporation of CA adversely affected the film properties. This behaviour was explained by the crosslinking and plasticizing effects of CA. Furthermore, in vitro cytotoxicity test demonstrated that RC/CA films are cytocompatible, suggesting the potential advantage of using these biopolymeric films for biomaterial and biological applications.

  相似文献   

13.
Based on pre-experimentation, three ornamental plants, Mirabilis jalapa, Impatiens Balsamin (I. Balsamin) and Tagetes erecta L., were selected as target plants to study the phytoextraction of chromium (Cr) in tannery sludge irrigated with four treatments according to Cr concentration gradient [Control (CK); 20.50 × 103 mg kg?1 (T1); 51.25 × 103 mg kg?1 (T2); 102.50 × 103 mg kg?1 (T3)]. Results of pot experiments showed that the biomass of Mirabilis jalapa and Tagetes erecta L. had no significant differences among the four treatments, while I. Balsamin showed a decline trend in the biomass with the increase of Cr concentration, probably due to some extent to the poisoning effect of Cr under treatment T2 or T3. Mirabilis jalapa accumulated Cr concentration, with 408.97, 124.97, 630.16 and 57.30 mg kg?1 in its roots, stems, leaves and inflorescence, respectively. The translocation factor and the bioaccumulation coefficient of Mirabilis jalapa are each greater than 1, indicating that Mirabilis jalapa has the strong ability to tolerate and enrich Cr by biological processes. Comparing accumulation properties of the three ornamental plants, in the amount and allocation, Mirabilis jalapa showed the highest phytoextraction efficiency and could grow well at the high Cr concentration. Our experiments suggest that Mirabilis jalapa is the expected flower species for Cr removal from tannery sludge.  相似文献   

14.
In this paper cellulose nanocrystals were prepared by treating microcrystalline cellulose with 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid. Cellulose nanocrystals, after separation from ionic liquid, were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM) Transmission Electron Microscope (TEM) and Thermogravimetric analysis. XRD results showed no changes in type of cellulose after the treatment with ionic liquid, however, high crystallinity index was observed in the ionic liquid treated sample. Cellulose nanocrystals, having length around 50–300 nm and diameter around 14–22 nm were observed in the ionic liquid treated sample under FESEM and TEM, and similar patterns of peaks as that of microcrystalline cellulose were observed for cellulose nanocrystals in the FTIR spectra. The thermal stability of the cellulose nanocrystals was measured low as compare to microcrystalline cellulose.  相似文献   

15.
Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites   总被引:1,自引:0,他引:1  
Poly(lactic acid) (PLA) and sugar beet pulp (SBP) were compounded by twin-screw extrusion and injection molded into composite forms. Specific mechanical energy decreased with the addition of SBP during processing. PLA–SBP composites retained more tensile strength than expected based on the Nicolais–Narkis model especially at high levels of SBP suggesting adhesion between SBP and PLA. The thermal characteristics of PLA were not affected by thermo-mechanical processing or by the incorporation of SBP up to 30% weight basis. PLA and PLA–SBP composites had similar tensile properties to other thermoplastic resins and may be used as a cost-competitive replacement.
Victoria L. FinkenstadtEmail:
  相似文献   

16.
Journal of Polymers and the Environment - As a promising biodegradable polymer, cellulose triacetate (CTA) was synthesized and plasticized with ionic liquids to produce flexible biocomposite films...  相似文献   

17.
The research was aimed at determining the abundance of biofilm formation by Escherichia coli and Staphylococcus aureus on the surface of polycaprolactone (PCL) with polyhexamethylene guanidine (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. Biofilm abundance was determined by spectrophotometry, using crystal violet staining. Hydrolytic enzymes after contact with the film were determined with the use of non-specific substrate—fluorscein diacetate. The effect of PHMG derivatives on dehydrogenases activity was assessed using the test, where triphenyltetrazolium chloride (TTC) is reduced to triphenylformazan (TF). The PCL containing PHMG granular polyethylene wax and salt of sulfanilic acid (0.6–1% wt.) strongest inhibited biofilm formation. PHMG derivatives introduced into PCL were found to slightly affect hydrolases activity in both E. coli and S. aureus at a concentration of 0.2 and 0.6%. It was also found that dehydrogenases activity was inhibited by PCL films containing PHMG derivatives. PCL containing 1% of PHMG sulfanilate strongest inhibited hydrolases activity, whereas PCL modified with 1% of PHMG granular polyethylene wax showed the highest inhibitory effect on the activity of both enzymes. W-PCL and A-PCL composites (at concentration of 0.6%) have optimal combination of antibiofilm activity and biodegradability.  相似文献   

18.
Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.  相似文献   

19.
Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.  相似文献   

20.
Chitosan films (CF) [1 and 2% w/v] alone and with cinnamaldehyde (CNE) [0.25, 0.5 and 1% v/v] were prepared using an emulsion method, and the obtained films were characterized in terms of water vapor permeability (WVP), water solubility and optical, mechanical and antioxidant properties. The incorporation of CNE at 1% (v/v) significantly decreased the water solubility of the film by approximately 4% for the 1 and 2% CF films, whereas the WVP increased (2.5–3.5 times). The incorporation of CNE (0.25 and 0.5%) into 2% CF significantly increased the tensile strength (TS) (62 and 34%, respectively) and the percent elongation (%E) values, 26, 30 and 52% for CF that contained 0.25, 0.5 and 1% CNE, respectively. The largest value of the elasticity modulus (EM) was observed for 2% CF with 0.25% CNE. All films exhibited a yellow appearance (b*), but the CNE content had a marked impact on the coloration of the films. The CNE recoveries of the CF films (1 and 2%) with 1% of CNE were high (43 and 67%). The antioxidant activities indicated that the incorporation of 1% CNE into CF films (1 and 2%) increased the antioxidant activity. The protective effects of the films with and without CNE on erythrocytes were very strong (36–72% hemolysis inhibition). These results suggest there are potential applications for CF-CNE films as active packaging for the preservation of food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号