首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Three series of polypropylene and waste tire dust (PP/WTD) blends using three different WTD sizes were prepared, compression-molded and cut into dumbbells. The specimens were exposed to natural weathering in the northern part of Malaysia for a period of 6 months. The results show that at the same blend composition, blends with fine WTD size exhibit higher mechanical properties than that of blends with coarse WTD after exposure to natural weathering. Regardless of WTD size, the retention of tensile strength and elongation at break, Eb increases with the increase in WTD content. From the exposed surface morphology, it is apparent that the blends with fine WTD and WTD-rich blends were able to withstand weathering better than blends with coarse WTD and PP-rich blends. The DSC thermograms suggest that the overall drop in melting temperature (Tm) of the exposed blends decreases as the WTD content increases.  相似文献   

2.
Novel polymer blends based on completely renewable polymers were reported. Polymer blends based on polylactic acid (PLA) and oxidized and hydroxylated soya bean oil polymers were prepared. Plasticization and mechanical strength effect of the soya bean oil polymers on the PLA were observed. Fracture surface analysis of the polymer blends was carried out by using scanning electron microscopy. The PLA blends showed more amorphous morphologies compared to pure PLA. The blends had better elongation at break in view of the stress–strain measurement. Blend of PLA with the hydroxylated polymeric soya bean oil indicated the slightly antibacterial properties.  相似文献   

3.
The rheologies, morphologies, crystallization behaviors, mechanical and thermal properties of poly(lactic acid) (PLA)/polypropylene (PP) blends and PLA/PP/maleic anhydride-grafted PP (MAPP) blends were investigated. The results showed that the complex viscosities of PLA/PP blends were between those of neat PLA and neat PP, and MAPP had a thinning effect on those of the blends. PLA/PP blends exhibited the distinct phase separation morphologies due to the limited partial miscibility of the blend components. MAPP slightly improved the miscibility between PLA and PP. Both the cold crystallization of PLA component and melt crystallization of PP component were enhanced, probably because PLA and PP were reciprocal nucleating agents. The tensile strength and flexural modulus decreased, while the tensile strain at break and heat deflection temperature (HDT) increased with the increasing PP content. MAPP had the positive effects on the notched impact strength and HDT of PLA-rich blends and also increased the flexural modulus of the binary blends. The thermal stability of the blend was improved by PP, and the incorporation of MAPP further enhanced the thermal stability.  相似文献   

4.
The blends of polylactic acid plasticized with acetyl tributyl citrate (P-PLA) and thermoplastic wheat starch (TPS) were prepared by a co-rotating twin screw extruder and the effect of maleic anhydride grafted PLA (PLA-g-MA) content as reactive compatibilizer on blends compatibility through morphological, rheological and tensile properties of the blends was investigated. Considerable improvement in properties of P-PLA/TPS (70/30 w/w) blend with incorporating the optimum PLA-g-MA content of 4 phr was achieved as this blend exhibited better morphological and rheological properties with an increase by 158 and 276% in tensile strength and elongation at break, respectively, compared to the uncompatibilized blend. Also the thermal stability and moisture sorption properties of the blends as effected by TPS content were studied. Decreasing in thermal stability and increasing in equilibrium moisture content of the blends were observed with progressively increasing of TPS content. For prediction the moisture sorption behaviour of blends with various TPS contents at different relative humidity, the moisture sorption isotherm data were modeled by GAB (Guggenheim–Anderson–de Boer) model.  相似文献   

5.
Blends of poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with poly (ε-caprolactone) were produced using melt mixing and solvent casting techniques. The biodegradation of blends was tested based in the ASTM G21-90 using Penicillium funiculosum fungal specie. The CO2 production during biodegradation was measured and fitted using the Gompertz model. Biodegradation of blends varies according to the mixing technique and the proportion of bacterial polymers in the blends. Although lag phase was larger, solvent-casted blends were easier to degrade due to their porous surface and relative lower crystallinity. P. funiculosum morphology during biodegradation appeared to be related to carbon availability i.e. larger and more complex conidiophores, more phialides per conidiophore and the presence of double-phialides, were found in blends with higher PHAs proportion. P. funiculosum morphology was independent to the blending technique used. Hence, morphology of P. funiculosum could be useful as a reference for carbon bioavailability of the blends.  相似文献   

6.
The poly(para-dioxanone) (PPDO)/poly poly (dl-lactide) (PDLLA) blends containing various contents of compatibilizer (0, 1, 3, 5, 10 %) were prepared by solution co-precipitation, which were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to form 10 % wt/vol solutions. Then in vitro hydrolytic degradation of PPDO/PDLLA blends containing poly (dl-lactide-co-para-dioxanone) (PLADO) as the compatibilizer was studied by the changes of weight loss, water absorption, thermal properties, surface morphology and mechanical properties of samples in phosphate buffered saline (pH 7.44) at 37 °C for 8 weeks. During the degradation, the weight loss and water absorption increased significantly for all blends, whereas hydrolysis rate of blends varied with the blend composition. The samples’ glass transition temperature decreased notably, while the degrees of crystallinity increased. Compared with uncompatibilized PPDO/PDLLA blends, PPDO/PDLLA blends with compatibilizer exhibited higher hydrolysis rate. The results suggested that the compatibilizer (PLADO) accelerated the hydrolysis rate of PPDO/PDLLA blends during the degradation.  相似文献   

7.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

8.
The miscibility of cellulose acetate (CA; degree of substitution = 2.5) and poly(ethylene succinate) (PES) has been investigated using a variety of thermal techniques and by solid-state carbon13 NMR spectroscopy. The blends containing greater than ca. 70% CA were found to be miscible. In the case of blends containing less than ca. 70% CA, a combination of thermal and NMR analyses suggests that these blends are not fully miscible on a 2.5- to 5-nm scale. On the scale which can be probed by dynamic mechanical thermal analysis (15 nm), the low-percentage CA blends exhibit “significant local concentration fluctuations≓. Investigation of the biodegradation of the blend components and of the blends revealed that PES degraded relatively rapidly and that CA degraded slowly. The blends degraded at a rate essentially identical to that of CA. Miscibility (75% CA blend) or crystallization of PES (30% CA blend) had no significant effect. These data suggest that a significant mode of degradation ófPES during composting involves chemical hydrolysis of the polymer followed by biological assimilation of monomers. Degradation of the blends is initiated in the amorphous phase. Because CA is a significant component of the amorphous phase, a small amount of CA significantly impacts the biodegradation rates of the blends.  相似文献   

9.
In this study water soluble sodium carboxymethyl cellulose (CMC) was blended with high density polyethylene (HDPE) by peroxide-initiated melt compounding technique. The compatibility of the blended polymers were carried out by silane crosslinking agent. A series of blends were prepared by varying the CMC contents up to a maximum of 50 phr. The physical properties of non-crosslinked and crosslinked blends were investigated in detail. FTIR analysis of crosslinked blend confirmed the presence of Si–O–Si and Si–O–C absorption peaks at 1050 and 1159 cm?1. Thermal stability of crosslinked blends improved as compared to its non-crosslinked congener. Rheological study of crosslinked blends illustrated high complex viscosity and dynamic shear storage modulus. The tensile strength of virgin polyethylene was 8.1 MPa whereas the maximum tensile strength of 19.6 MPa was observed in crosslinked blend. Similarly lower deformation was observed in crosslinked blends under static load. Scanning electron microscopy of crosslinked formulations also showed strong adhesion between the polymers interface. The compatibility of HDPE and CMC is attributed to both free radical and condensation reactions.  相似文献   

10.
The present investigation dealt with the flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends using a capillary rheometer. For this purpose, PLA/PS blends with different ratios of the concentrations were prepared using a single screw extruder. The shear viscosity, shear stress, shear rate, power-law index, viscous activation energy at a constant shear stress, and elongational stress were determined. PLA/PS blends exhibited a typical shear-thinning behavior over the entire range of shear rates tested, and the viscosity values of the blends would tend to decrease with increasing amount of PLA. In addition, the polymer blend of 70 % PLA and 30 % PS was found to be relatively less sensitive to the processing temperature, implying that the extrusion process was more desirable for fabrication of PLA/PS polymer blend than the injection process.  相似文献   

11.
Melt extrusion was used to obtain thermoplastic corn gluten meal (tCGM) blends from plasticized corn gluten meal (pCGM) and poly(butylene adipate-co-terephthalate) (PBAT). Dynamic rheological tests, morphology and spectroscopy were employed to understand the effect of the plasticization and destructurization of corn gluten meal (CGM) on tCGM blends. Rheological data showed a plateau in the low frequencies for tCGM blends demonstrating network formation which responds elastically over long timescales. Also, complex viscosity data showed the existing of shear thinning for PBAT and PBAT–CGM blend. Furthermore, rheology and morphology showed the synergistic influence of plasticization and destructuralization of CGM on the phase structure development of the blends. In addition, it was found for unmodified CGM–PBAT blend there was significant frequency dependence for G′ indicating it just acted as filler for PBAT matrix. FTIR studies showed that the urea has helped in unfolding the corn protein and facilitated hydrogen bonding interactions with PBAT. Tensile properties showed an improvement in tCGM blends when compared unmodified CGM blend. Tensile strength of tCGM blends was almost same as that of the neat PBAT matrix. Percent elongation, a strong reflection of the state of interface in the blends has showed higher values, indicating strong interactions between the PBAT and pCGM in the blend system.  相似文献   

12.
Blends of poly-3-hydroxybutyrate with an elastomeric medium-chain-length poly-3-hydroxyalkanoate (MCL-PHA), containing 98 mol% 3-hydroxyoctanoate and 2 mol% 3-hydroxyhexanoate (referred to as PHO), were prepared by melt compounding. Coarsening of the droplet-matrix morphology of the blends was noted as the PHO content increased beyond 5 wt%; this was attributed to the significant viscosity mismatch between the components. Addition of PHO improved the thermal stability of the blends, reduced their crystallinity and resulted in shifts in their melting and crystallization temperatures. The blends had improved tensile strain at break. The unnotched impact strength showed a threefold increase at 30 wt% PHO content. Cross-linking of PHO using a peroxide initiator increased its viscosity, thus improving the morphology and mechanical properties of the blends.  相似文献   

13.
Fully-biodegradable and highly-filled thermoplastic starch plasticized with glycerol (GTPS)/poly (butylene succinate) (PBS) blends were prepared by Haake Mixer. Processing properties, thermal behaviors including melting and crystallization behavior, crystal structure, and compatibility of the blends were investigated using differential scanning calorimeter (DSC), wide angle X-ray diffractometer (WAXD), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). The maximum and equilibrium torques decreased with the rising of glycerol contents and the dropping of PBS contents. GTPS30/PBS blends exhibited double melting endothermic peaks in the DSC thermograms, which related to the crystallization behavior and compatibility of the blends, but no double peaks for GTPS40/PBS. The addition of starch and glycerol could lead to higher crystallinity and lower crystallization rate of PBS, but would not change the crystal types and crystallite sizes of PBS according to DSC and WAXD analysis. SEM and DMA results gave the evidence to confirm the better compatibility of GTPS40/PBS. Besides, higher storage modulus in glassy state of GTPS/PBS blends than PBS could be seen from DMA analysis, which was the contrary in rubbery state.  相似文献   

14.
In this account, we report our findings on blends of cellulose acetate having a degree of substitution (DS) of 2.49 (CA2.5) with a cellulose acetate having a DS of 2.06 (CA2.0). This blend system was examined over the composition range of 0–100% CA2.0 employing both solvent casting of films (no plasticizer) and thermal processing (melt-compressed films and injection molding) using poly(ethylene glycol) as a common plasticizer. All thermally processed blends were optically clear and showed no loss in optical quality after storage for several months. Thermal analysis and measurement of physical properties indicate that blends in the middle composition range are partially miscible, while those at the ends of the composition range are miscible. We suggest that the miscibility of these cellulose acetate blends is influenced primarily by the monomer composition of the copolymers. Bench-scale simulated municipal composting confirmed the biodestructability of these blends and indicated that incorporation of a plasticizer accelerated the composting rates of the blends.In vitro aerobic biodegradation testing involving radiochemical labeling conclusively demonstrated that both the lower DS CA2.0 and the plasticizer significantly enhanced the biodegradation of the more highly substituted CA2.5.While this work was in progress, Robert Gardner was struck with cancer and died on June 6, 1995. This paper is dedicated to his memory and to his contributions as a friend and colleague.  相似文献   

15.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

16.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

17.
Lightweight Concrete Containing an Alkaline Resistant Starch-Based Aquagel   总被引:1,自引:0,他引:1  
Starch aquagel-based lightweight concrete has properties similar to those of other lightweight concrete products. However, starch aquagels are unstable in the strongly alkaline conditions typical of Portland Cement-based concrete and may interfere with the setting process. The effect of alkali treatments on the physical, mechanical, and functional properties of starch aquagels and aquagels from starch/polymer blends was investigated. Starch was blended at 100–115°C in a twin-screw extruder with five different polymers to determine whether the blends improved alkaline resistance. Polymer blends containing 5%, 15%, and 30% of the polymer hydrated and formed aquagels when equilibrated in water for 24 h. However, equilibrium moisture content was lower for the blends compared to the starch control. Aquagels equilibrated in 0.15 N NaOH swelled, lost compressive strength and had greater than 90% moisture. The blend of starch and 30% PVOH absorbed less moisture and was more resistant to alkaline dissolution in 1 N NaOH than the other blends tested making it a more suitable material for aquagel-based concrete. The moisture content of starch-based aquagels and mixing time were critical factors in determining setting times. The size of aquagel blends had a minor effect on density and compressive strength.  相似文献   

18.

This study investigates the effect of using a multifunctional epoxide chain extender (Joncryl® ADR 4468) on the thermal stabilization and rheological properties of recycled polyethylene terephthalate (R-PET) and its blends with polybutylene terephthalate (PBT). The R-PET samples were prepared without and with chain extender (CE) contents of 0.4 wt% and 0.8 wt%. R-PET/PBT blends with weight ratios of 75w/25w, 50w/50w and 25w/75w were also prepared without and with a given CE content of 0.2 wt%. The thermal stability of the melt blended samples was analyzed through small amplitude oscillatory shear (SAOS) rheological experiments. The structure of the samples was evaluated using a Fourier transform infrared (FTIR) spectrometer. While the dynamic rheological properties of R-PET were improved with the addition of Joncryl and by blending with PBT, during the SAOS rheological experiments, the complex viscosity of R-PET further increased due to the concurrent polycondensation of R-PET and the resumption of Joncryl reaction with R-PET molecules. These reactions during the rheological experiments were further expedited with increasing the testing temperature. On the other hand, in R-PET/PBT blends, the reactivity of Joncryl was more noticeable in blends with higher R-PET contents due to the higher available internal reactive sites of much shorter R-PET molecules. It was observed that the addition of only 0.2 wt% Joncryl to the blends of R-PET/PBT (75w/25w) dramatically improves the thermal stability and dynamic rheological properties of R-PET and most likely its processability.

  相似文献   

19.
Blending soy protein with polyesters using a polyvinyllactam as a compatibilizer successfully made soy protein-based plastics. The polyesters used to produce blends included polycaprolactone (PCL) and Biomax (a commercial biodegradable polyester). The blends were processed by compounding extrusion and injection molding. Blends containing soy protein/Biomax-poly(vinyl alcohol) had tensile strengths ranging from 16–22 MPa, with samples containing larger percentages of the synthetic polymer exhibiting greater strengths. Blends made from soy protein, Biomax, and PCL had tensile strengths ranging from 27–33 MPa. All the blends had high Young's moduli but demonstrated brittle characteristics as evident from their low elongations at break, ranging from 1.8–3.1%. Plastics made from soy protein/polyester blends exhibited low water absorption and had good stability under ambient conditions relative to the plastics made from soy protein alone. Blends made from soy protein flour produced plastics with the lowest water absorption.  相似文献   

20.
Management of natural aggregate resources has become one of the most important challenges in construction, especially for high demand applications such as roads. Incinerator bottom ash (IBA), which is produced from burning domestic waste, has been considered a useful solution to the shortage of natural resources. In this research, IBA was mixed with limestone to produce an acceptable blend for use as a road foundation layer. Novel and traditional additives were adopted to improve the mechanical properties of IBA blends. The study focused on the treatment effect of additives on the mechanical characteristics of IBA blends under monotonic and cyclic triaxial stresses. The investigation evaluated fundamental material properties, including resilient modulus, initial Young's modulus and Poisson's ratio. Two nonlinear empirical models were adopted to depict the experimental resilient modulus results of the IBA blends. An approach has been proposed to predict realistic and representative values of resilient modulus for the material. In addition, a new relationship has been established between Young's modulus, resilient modulus and Poisson's ratio. Triaxial test results revealed that additives are more efficient with the control limestone blend than with the IBA blends. Novel additives, such as enzyme I and silica fume, produced a noticeable improvement in IBA properties in comparison to traditional additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号