首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
An increasing industrial interest is applications of kenaf and ramie fiber nonwovens for making automotive interior trim parts because of their excellent strength and renewability. This paper presents a study on the manufacture and evaluation of the kenaf/ramie nonwoven composite for this automotive end use. Carding, needle-punching, and wet bonding were used to fabricate the composite. End-use performance of the composite, in terms of tensile strength, thermal conductivity, dynamic mechanical property, and bonding structure, was tested using a series of instruments in accordance with the ASTM methods. Bonding performance of the polyvinyl alcohol binder and acrylic copolymer binder was also compared. Research results revealed that the acrylic-copolymer bonded composite was significantly anisotropic in both tensile and bending deformation and the polyvinyl-alcohol bonded composite was significantly anisotropic only in bending deformation. For the acrylic-copolymer bonded composite, increase of padding times helped enhance tensile properties. The acrylic-copolymer bonded composite also exhibited a better performance in dynamic thermal mechanical deformation but indicated insignificant difference of thermal conductivity compared to the polyvinyl-alcohol bonded composite.  相似文献   

2.
Journal of Material Cycles and Waste Management - This paper shows a composite material fabricated from plastic waste of polyethylene terephthalate (PET) and polyurethane as binder, in a ratio of...  相似文献   

3.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

4.
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.  相似文献   

5.
以正硅酸乙酯(TEOS)作为包覆材料,对锰锌铁氧体纳米颗粒进行SiO2包覆,制备出锰锌铁氧体/SiO_2复合磁性材料。利用FTIR,XRD,SEM等技术对其进行了表征,并研究了其对模拟亚甲基蓝废水的吸附脱色效果。实验结果表明:当SiO_2质量分数为40%1时,采用先将锰锌铁氧体在柠檬酸溶液中搅拌分散3 h后,加人氨水调节溶液pH,再继续搅拌分散3 h的分段分散方法制备的复合磁性材料对亚甲基蓝废水的处理效果更好,处理亚甲基蓝质量浓度为50 mg/L、COD为160 mg/L的废水,废水脱色率为97.2%,COD去除率为19.3%。表征结果显示:复合磁性材料锰锌铁氧体/SiO_2为球形颗粒,平均粒径为100 nm;SiO_2包覆前后锰锌铁氧体的晶型均为尖晶石型结构,在复合磁性材料中SiO_2以无定型的形态存在。  相似文献   

6.
A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.  相似文献   

7.
Journal of Material Cycles and Waste Management - This study was designed to investigate the hardened performance of the paste specimens produced using a composite binder with high volumes of mine...  相似文献   

8.
A new composite has been developed from natural rubber and chrome-tanned leather waste for use in footwear and textile industries. The contribution of this material to environmental quality and sustained development should be highligh because chrome tanned leather wastes, a major environmental problem, can be recycled. However, the safety of this new material for human use is questionable, as it is already well reported in the literature that chromium, particularly in its hexavalent oxidation state, can be genotoxic and carcinogenic to living beings. Thus, the aim of this study was to evaluate in vitro biocompatibility of this composite material for possible use in the footwear and textile industries, through cytotoxicity, cell adhesion, and genotoxicity tests. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure both concentrations of total and hexavalent chromium. Based on the findings, it was concluded that the composite exhibits low levels of cytotoxicity and genotoxicity, and possesses favorable properties for initial cell adhesion. Furthermore, it was verified that the composites released low concentrations of chromium and that the predominant species released would be trivalent chromium. The results of the present study open the possibility of the incorporation of solid residues of tanned leather into chromium without necessarily the chromium contained in these residues influences the toxicity and genotoxicity of this new material.  相似文献   

9.
In this study, a new type poly(vinyl alcohol)/peat composite bead is prepared and is shown suitable as a filter material for biofiltration. The optimal preparation condition is with the peat size of 16–35 mesh, the ratio of water to peat of 40g water/10 peat and the immersion time in the phosphate solution of 30min. The composite bead prepared by this process is a porous spherical particle with a density of 0.692 g/cm3. It contains phosphor and nitrogen nutrient are 2.91mg P/g dry solid and 3.25mg N/g dry solid, respectively. The diameter of composite bead is between 2.4 and 6.0mm and the average diameter is about 4.0mm. The equilibrium moisture content of the bead from adsorption and holding experiments are 50.5 and 66.8% on a wet basis, respectively, corresponding to the optimal filter material required and is sufficient to sustain biological activity as the bead adsorbs equilibrium moisture. The composite bead has higher moisture holding capacity and the compression strength than the pig manure compost filter material. The composite bead has buffer capacity and could maintain the filter bed at pH = 6.9–7.2 during the operation period. The percentage of removed ethyl acetate could stay at over 99% for 33 days operation while the composite bead adsorbed inorganic nitrate nutrient.  相似文献   

10.
Journal of Material Cycles and Waste Management - The objective of this study is to manufacture a new geopolymer binder from pharmaceutical glass waste as a main raw material. The geopolymer...  相似文献   

11.
以Na_2SiO_3为原料、聚乙二醇-2000为结构导向剂,采用溶胶-凝胶和高温煅烧两步法制备SiO_2微球,再以其为载体,采用液相还原法负载零价纳米铁,制得Fe/SiO_2复合材料。采用SEM,FTIR,XRD技术对Fe/SiO_2复合材料的形貌结构进行表征,研究了Fe/SiO_2复合材料对Cd~(2+)的吸附性能。表征结果显示,纳米铁以毛绒状负载在SiO_2微球上。实验结果表明,在溶液pH为5、n(SiO_2):n(Fe)=2、老化温度为70℃的最佳工艺条件下制备的Fe/SiO_2复合材料在25℃时处理Cd~(2+)初始质量浓度为35 mg/L的模拟含Cd~(2+)废水,Cd~(2+)吸附容量为28.10 mg/g。Fe/SiO_2复合材料对Cd~(2+)的吸附作用较符合准二级吸附动力学方程,对Cd~(2+)的等温吸附过程更符合Langmuir模型。  相似文献   

12.
In the combustion process of municipal solid waste (MSW), bottom ash (BA) represents the major portion of the solid residue. Since BA is composed of oxides, especially SiO(2) and CaO, the feasibility of its application in concrete as a substitute for cement was tested. It was found that at the age of 28 days, the flexural and compressive strengths of the binder linearly decrease at the rate of 0.03 and 0.02 MPa per wt% of BA in the binder, respectively. According to the results it may be recommended to replace up to 15 wt% of cement by BA and to use such binder where a low strength of concrete elements is required. Furthermore, the aggregate used for low strength concrete need not be of a very good quality. Therefore, gravel aggregate was partially replaced by recycled aggregate (RA). Consistency measured by slump was significantly reduced (>50%) when BA or/and RA were introduced into the mixture. However, concrete density and compressive strength were not affected and were approximately 2300 kg/m(3) and approximately 40 MPa, respectively.  相似文献   

13.
Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and 35-50 cm) was determined. The nitrate concentration in drainage water confirmed the results obtained in the incubation experiment: nitrate leaching was higher in soil treated with MWC due to its higher N-mineralization rate. Nevertheless, the nitrate losses represented a low amount compared with the total nitrogen added to soil. No clear signs of water-draining contamination were observed during the first year after the application of AC and PS; however, the nitrate leaching in soil treated with MWC slightly exceeded the limit allowed for the Drinking Water Directive 98/83/CE.  相似文献   

14.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   

15.
In this study, a Poly(vinyl alcohol)(PVA)/compost composite bead is prepared and is indicated suitable as a filter material for biofiltration. The optimal preparation process is with the compost size of 16–35 mesh, the ratio of water to compost of 40 g/15 g compost, and the immersion time in the phosphate solution of 60 min. The composite bead prepared by this process is a porous spherical particle with a diameter between 2.4 and 6.0 mm and a density of 0.96 g/cm3. It contains 9.43 mg P/g dry solid and 12.1 mg N/g dry solid. The equilibrium moisture content of the composite bead bed from adsorption and holding experiments is 50.5 and 54.6% on a wet basis respectively, which is about 1.74 times higher than that of swine manure compost bed. It corresponds to the optimal filter material required and is sufficient to sustain biological activity as the composite bead adsorbs equilibrium moisture. The bulk compressive strength of the composite bead bed is about 1.15 times larger than that of swine manure compost bed to ensure even distribution of air flow and reduce the head loss as the air flow stream passed through. The pH value of the filter bed could maintain in the 6.9–7.2 range during the operation period due to the composite bead has the phosphate buffer capacity. The percentage of ethyl acetate removal could remain at over 99% for 40 days operation while the composite beads adsorbed inorganic nitrate nutrients. The pressure drop of two kind composite beads and pig manure compost filter beds are 0 and 2 mm H2O, respectively, after operating for 40 days.  相似文献   

16.
Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60–70%) and mineral wool fibers (30–40%). 0.3–0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10–30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes.  相似文献   

17.
以煤气化细渣为原料制备了高比表面积碳硅复合材料,并利用过硫酸铵对其进行表面改性,用于吸附100.0 mg/L PbCl2溶液中Pb2+。表征结果显示:碳硅复合材料的比表面积为1 347 m2/g,改性后降为474 m2/g;改性后材料表面的羟基、羰基和羧基等含氧基团的含量显著增加。实验结果表明:溶液pH为5时,改性碳硅复合材料对Pb2+的平衡吸附量为124 mg/g,Pb2+去除率可达98.2%;吸附过程符合准二级动力学模型,以化学吸附为主,伴有物理吸附;吸附过程分为外扩散和内扩散两个阶段,受内扩散控制。  相似文献   

18.
Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.  相似文献   

19.
采用超声辅助水热法合成了磁性分子筛Fe3O4/SSZ-13,然后通过溶胶-凝胶法对其继续负载TiO2制得复合光催化剂TiO2-Fe3O4/SSZ-13。借助XRD,FTIR,SEM,TEM,VSM,UV-Vis,PL对其形貌、结构及性能进行了表征,并考察了其光催化性能。表征结果表明,Fe3O4的加入不会改变分子筛的原有结构,复合材料的光响应范围扩大,电荷分离效率提高。降解实验结果表明,光照40 min时活性艳红的去除率可达89.7%,光照60 min时活性艳红去除率可达最大(93.6%),较TiO2提高了5.7%。此外,这种材料还具有较强的磁性,饱和磁化强度为17.80 (A·m2)/kg,可通过外加磁场回收。  相似文献   

20.

To date, heavyweight concretes have been produced from various heavy aggregates as radiation insulation materials, and their gamma ray absorption levels have been investigated. Many of the studies have used heavy aggregates instead of cement or coarse aggregates from composite material components. The present study prepared lightweight concretes using copper mine tailings, clay brick dust, and fly ash instead of fine aggregates. Some mechanical tests (density, compressive strength, and ultrasonic pulse velocity) were performed on composite blocks with dimensions of 5*5*5 cm, and radiation interaction parameters [linear absorption coefficient (cm−1), mass attenuation coefficient (cm2/gr), HVL (half-value layer) (cm), MFP (cm), and permeability (%)] were measured. Radiation interaction parameters were obtained using a HPGe gamma detector. Radiation measurements were performed at five different photon energies: 583 keV (133Ba), 609 keV (133Ba), 662 keV (137Cs), 911 keV (133Ba), 1173 keV (60Co), and 1332 keV (60Co). Additionally, the compressive strength and UPV values of composite materials were associated with their gamma ray permeability. Tests revealed that samples with the addition of copper mine tailings yielded the best energy absorption at all energy levels and that absorption decreased as the energy level increased. For example, with the increasing of the energy level, mass attenuation coefficients decreased. The highest mass attenuation coefficients were obtained as 0.128 cm2/g at an energy level of 583 keV in composites produced from copper mine tailings. On the other hand, it was measured at the same energy level as 0.069 cm2/g (a 46% decrease) in the composites produced with fly ash. In addition, it was observed that fly ash used as a fine aggregate did not have a significant effect on mass attenuation coefficient and could be used as a gamma shield if the material thickness was increased to an average of 14 cm. This study revealed that tailings materials could be used as radiation shields. This study also demonstrated that not using heavy aggregates and producing lightweight concrete in radiation shield production significantly reduced shield production cost.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号