首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perchlorate is a stable anion that has been introduced into the environment through activities related to its production and use as a solid rocket propellant. Perchlorate is thought to transport through soils without being adsorbed; thus, for determination of perchlorate in soil, samples are typically extracted with water prior to analysis. The completeness of extraction depends on perchlorate existing as a free ion within the soil matrix. In this study, perchlorate extraction efficiency was evaluated with five soil types under two different oxygen states. For each soil, 30% (w/w) slurries were prepared and equilibrated under either oxic or anoxic conditions prior to spiking with a stock solution of sodium perchlorate, and the slurries were then maintained for 1-week or 1-month. At the end of the exposure, slurries were centrifuged and separated into aqueous and soil phases. After phase separation, the soil was washed first with deionized water and then with 50mM NaOH, producing second and third aqueous phases, respectively. Perchlorate concentrations in the three aqueous phases were determined using ion chromatography. The results obtained from this study suggest that matrix interference and signal suppression due to high conductivity have greater effects upon observed perchlorate concentrations by ion chromatography than does perchlorate interaction with soil. Thus, a single water extraction is sufficient for quantitative determination of perchlorate in soil.  相似文献   

2.
Several issues regarding the adverse impacts of the chemical—perchlorate—have been identified recently. Perchlorate is a persistent chemical, and remains in water and soil, thereby accumulating in plants and animals. Fetuses suffer the most from perchlorate contamination. There are ongoing debates about the impacts, toxicity and health effects of perchlorate. Many studies have been conducted on its ecotoxicity and its effects, but standards do not exist for perchlorate. This study aims to review the sources, impacts, fate, transport and remediation of perchlorate.  相似文献   

3.
The perchlorate anion (ClO 4 m ) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 µg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 µg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

4.
Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23+/-1 degrees C) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L(-1)) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride.  相似文献   

5.
The perchlorate anion (ClO4) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 μg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 μg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

6.
Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water.  相似文献   

7.
Long Ye  Hong You  Jie Yao  Xi Kang  Lu Tang 《Chemosphere》2013,90(10):2493-2498
Seasonal variation and influencing factors of perchlorate in snow, surface soil, rain, surface water, groundwater and corn were studied. Seven hundreds and seventy samples were collected in different periods in Harbin and its vicinity, China. Perchlorate concentrations were analyzed by ion chromatography–electrospray mass spectrometry. Results indicate that fireworks and firecrackers display from the Spring Festival to the Lantern Festival (February 2, 2011–February 17, 2011) can result in the occurrence of perchlorate in surface soil and snow. Perchlorate distribution is affected by wind direction in winter. Melting snow which contained perchlorate can dissolve perchlorate in surface soil, and then perchlorate can percolate into groundwater so that perchlorate concentrations in groundwater increased in spring. Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer. Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River contained higher perchlorate concentrations than that far away with the rivers. The corns have the ability to accumulate perchlorate.  相似文献   

8.
Water, soil, vegetation, and rodents were collected from three areas along the Las Vegas Wash, a watershed heavily contaminated with perchlorate. Perchlorate was detected at elevated concentrations in water, soil, and vegetation, but was not frequently detected in rodent liver or kidney tissues. Broadleaf weeds contained the highest concentrations of perchlorate among all plant types examined. Perchlorate in rodent tissues and vegetation was correlated with perchlorate concentrations in soil as expected, however rodent residues were not highly correlated with plant perchlorate concentrations. This indicates that soil may be a greater source, or a more constant source of perchlorate exposure in rodents than vegetation.  相似文献   

9.
Perchlorate is an oxidizer that has been routinely used in solid rocket motors by the Department of Defense and National Aeronautics and Space Administration. Royal Demolition Explosive (RDX) is a major component of military high explosives and is used in a wide variety of munitions. Perchlorate bearing wastewater typically results from production of solid rocket motors, while RDX is transferred to Army industrial wastewaters during load, assemble and pack operations for new munitions, and hot water or steam washout for disposal and deactivation of old munitions (commonly referred to as demilitarization, or simply demil). Biological degradation in Anaerobic Fluidized Bed Reactors (AFBR), has been shown to be an effective method for the removal of both perchlorate and RDX in contaminated wastewater. The focus of this study was to determine the effectiveness of removal of perchlorate and RDX, individually and when co-mingled, using ethanol as an electron donor under steady state conditions. Three AFBRs were used to assess the effectiveness of this process in treating the wastewater. The performance of the bioreactors was monitored relative to perchlorate, RDX, and chemical oxygen demand removal effectiveness. The experimental results demonstrated that the biodegradation of perchlorate and RDX was more effective in bioreactors receiving the single contaminant than in the bioreactor where both contaminants were fed.  相似文献   

10.
Surface water samples were collected from 55 sites in the Great Lakes Basin and analyzed for the presence of perchlorate using HPLC/MS/MS with an isotopically enriched internal standard. Sites included areas impacted by heavy industry, urbanization, agriculture and atmospheric deposition. Perchlorate was detected at several of the sites at concentrations close to the method detection limit (0.2 microg/l). Despite these low concentrations, its presence was confirmed by sample concentration and determination of the isotopic ratio of perchlorate. The presence of perchlorate at two of the sites was related to a fireworks display which had occurred prior to sampling. The other detections of perchlorate were in rivers/creeks draining watersheds which had high density livestock and crop farming activity. We suspect the two are related. To our knowledge, these are the first reported concentrations of perchlorate in Canadian surface waters.  相似文献   

11.
高氯酸盐是广泛存在于水体环境中的具有高稳定性、高扩散性和持久性的内分泌干扰物,其毒理机制、环境污染、迁移转化和处理技术已成为目前环保领域的研究热点.简要介绍了高氯酸盐的特性、来源及对人体的危害,对比了国内外不同地区高氯酸盐的污染状况,综述了中国已开展的高氯酸盐处理技术,为高氯酸盐环境污染问题的研究提供参考.  相似文献   

12.
The purpose of this study was to investigate the uptake and elimination of perchlorate in eastern mosquitofish (Gambusia holbrooki). Fish were exposed to 0.1-1000 mg/l sodium perchlorate for 12h, 1, 2, 5, 10, and 30 days, and perchlorate was determined in whole body extracts. Perchlorate was not detected in mosquitofish exposed to the low concentrations of perchlorate (0, 0.1, and 1mg/l sodium perchlorate), regardless of the exposure time, whereas it was detected when fish were exposed to 10, 100, and 1000 mg/l. The tissue concentrations were approximately 10 times less than that in the water. There was no difference in the uptake of perchlorate depending upon the exposure time, however, a difference in perchlorate uptake depending upon the concentration of the exposure dose (P<0.001) was observed. Uptake (K(u)) and elimination (K(e)) rate constants were 0.09 l/mg day and 0.70 day(-1), respectively. The half-life (T1/2) of perchlorate was 0.99 day. Thus, it appears that perchlorate is rapidly taken up and eliminated in eastern mosquitofish. These results are critical and may be used to develop models of fate, effects, and transport of perchlorate in natural systems, as well as to assess ecological risk in affected ecosystems.  相似文献   

13.
Pendrin mediates uptake of perchlorate in a mammalian in vitro system   总被引:1,自引:0,他引:1  
Perchlorate is a known endocrine disruptor present in groundwater, vegetables and dairy food products in many regions of the United States. It interferes with the uptake of iodide into the thyrocyte by the sodium-iodide symporter at the basolateral surface, thus potentially disrupting the synthesis of thyroid hormone. Because transport of iodide from the thyroid follicular cells to the follicular lumen is mediated by the protein pendrin at the apical surface, we hypothesized that perchlorate may also interact with this protein. Therefore, HeLa cells were transfected with the human SLC26A4 gene, which encodes pendrin, to generate an in vitro mammalian system expressing the recombinant pendrin protein (HeLa-PDS). The HeLa-PDS cells, along with untransfected cells, were then cultured in presence of iodide and/or perchlorate. Intracellular levels of these two chemicals were measured by ion chromatography tandem mass spectrometry. Results from this study show that iodide and perchlorate uptake increases significantly in HeLa-PDS cells as compared to untransfected cells. Thus, recombinant HeLa cells expressing pendrin protein accumulate iodide and perchlorate intracellularly, indicating that pendrin is involved in the uptake of perchlorate. Additional results from this study suggest that iodide and perchlorate competitively inhibit each other for uptake by pendrin. The ability of perchlorate to compete with iodide for uptake by both basal and apical transporters may increase the potential of perturbation of thyroid homeostasis and therefore the estimated risk posed to susceptible human populations.  相似文献   

14.
Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p?<?0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.  相似文献   

15.
Perchlorate concentrations in rice samples from many different provinces, and correlation with surface water contamination, were investigated in the Republic of Korea. Perchlorate levels in the 51 rice samples purchased from local markets ranged from below the detection limit to 1.79?±?0.39 μg/kg with a mean level of 0.21 μg/kg and 7 samples collected from the Nakdong River watershed ranged from 0.38?±?0.1 to 3.23?±?0.47 μg/kg with a mean level of 0.9 μg/kg. The correlation coefficient between perchlorate levels in rice samples from the Nakdong river watershed and the levels in surface water was estimated to be approximately 0.904 in the 95 % confidence interval. These results show that surface water contamination was highly related to the perchlorate pollution of rice in the Republic of Korea.  相似文献   

16.
Paleogeochemical deposits in northern Chile are a rich source of naturally occurring sodium nitrate (Chile saltpeter). These ores are mined to isolate NaNO3 (16-0-0) for use as fertilizer. Coincidentally, these very same deposits are a natural source of perchlorate anion (ClO4-). At sufficiently high concentrations, perchlorate interferes with iodide uptake in the thyroid gland and has been used medicinally for this purpose. In 1997, perchlorate contamination was discovered in a number of US water supplies, including Lake Mead and the Colorado River. Subsequently, the Environmental Protection Agency added this species to the Contaminant Candidate List for drinking water and will begin assessing occurrence via the Unregulated Contaminants Monitoring Rule in 2001. Effective risk assessment requires characterizing possible sources, including fertilizer. Samples were analyzed by ion chromatography and confirmed by complexation electrospray ionization mass spectrometry. Within a lot, distribution of perchlorate is nearly homogeneous, presumably due to the manufacturing process. Two different lots we analyzed differed by 15%, containing an average of either 1.5 or 1.8 mg g-1. Inadequate sample size can lead to incorrect estimations; 100-g samples gave sufficiently consistent and reproducible results. At present, information on natural attenuation, plant uptake, use/application, and dilution is too limited to evaluate the significance of these findings, and further research is needed in these areas.  相似文献   

17.
We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.  相似文献   

18.
Liu F  Gentles A  Theodorakis CW 《Chemosphere》2008,71(7):1369-1376
Exposure to perchlorate or other thyrotoxic compounds can cause hypothyroidism in most vertebrates, and this may affect levels of endogenous antioxidants and cause oxidative stress. Arsenic also induces oxidative stress in animals by modifying the antioxidant capacity and may alter the thyroid homeostasis. Therefore, hypothyroidism may affect the toxicity of arsenate. In order to test this hypothesis, zebrafish (Danio rerio) were made hypothyroid by exposure to perchlorate, and toxicity of arsenate in hypothyroid and euthyroid fish was compared. The endpoints were LC50 and thyroid histopathology. Additionally, the recovery of thyroid histopathological indices after cessation of perchlorate exposure was determined. The current study showed that 96 h LC50 of perchlorate anion and arsenate ion to juveniles fish (37 day post-fertilization) were 2532 and 56 mg l(-1), respectively. In addition, hypothyroid fish were more sensitive to arsenate, with a 96 h LC50 of 43 mg l(-1). Growth rates were also significantly retarded by perchlorate exposure. After cessation of perchlorate exposure, there was recovery of thyroid histopathology in terms of epithelial cell height, but not colloid area or growth rate. In conclusion, perchlorate enhances arsenate toxicity to juvenile zebrafish, and the rate of thyroid recovery after cessation of perchlorate exposure depends on the endpoints examined.  相似文献   

19.
The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.  相似文献   

20.
Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号