首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
AFB的活性污泥中发酵细菌的分离及其初步鉴定   总被引:1,自引:0,他引:1  
从处理啤酒废水的厌氧流化床的活性污泥中分离纯化到了发酵细菌,并对其培养条件进行了研究,实验表明,该发酵细菌最佳培养温度为37~42℃,最佳培养时间为28 d,同时对其进行了生理生化和形态鉴定。将该发酵细菌反加到AFB反应器中,能有效降低反应器的启动时间,能提高反应器处理啤酒废水的处理效率约8%。  相似文献   

2.
采用活性污泥法对某炼油厂预处理后的碱渣废水进行了处理。以目标废水为碳源对活性污泥进行了成功驯化,然后用驯化后的活性污泥对炼油碱渣废水进行净化处理,以降低其COD(化学需要氧量)值。实验结果表明,活性污泥生化处理对炼油碱渣废水的COD值具有较高的降低作用。在水力停留时间为24 h的条件下,COD的平均去除率可达76%,容积负荷为0.7 kg COD/(m3·d)左右,运行10 d后,COD总去除率可达74%左右,出水水质达到国家三级排放标准(GB 8978-1996)。  相似文献   

3.
抗生素对细菌具有强抑制作用,从而会影响废水生物处理系统中的微生物群落结构。在用定量PCR方法对土霉素生产废水处理装置(进水中土霉素浓度为1 662.1±248.6μg/L)中的细菌16S rRNA基因和真菌18S rRNA基因的含量进行比较的基础上,利用16S rRNA基因克隆文库方法对污泥中的细菌群落结构进行了详细解析。定量PCR结果显示,土霉素废水活性污泥中真菌(18S rRNA)/细菌(16S rRNA)基因的拷贝数比例高达1.2,明显较高于非抗生素肌苷废水活性污泥中的比例1.52×10-6,表明真菌对于土霉素废水中有机物的去除可能发挥重要作用。细菌克隆文库分析结果显示,Alpha变形菌和Beta变形菌是主要的优势菌,比例分别为23.7%和22.0%,其次是酸杆菌(17.0%)和拟杆菌(11.9%)。  相似文献   

4.
高盐浓度对工业废水生化处理的影响研究   总被引:4,自引:0,他引:4  
研究了生物制药废水的不同含盐量对生化处理系统效果的影响,以及对该系统中的生物学变化规律的影响。在含盐量低于2.5×104mg/L时,废水生化处理系统COD去除率可稳定在92%左右,污泥活性良好;随着进水盐浓度的增加,含盐量达到2.5×104mg/L时,污泥活性开始受到抑制,COD去除率急剧下降至80%左右;当废水含盐量达到3.5×104mg/L时,污泥活性明显受到抑制,污泥絮体开始部分解体,COD去除率下降到60%左右;当废水含盐量达到6.0×104mg/L时,污泥活性系统趋于崩溃,原生动物近乎绝迹,污泥絮体细碎分散,可见少量球形游离细菌,COD去除率仅有45%左右。  相似文献   

5.
针对实际海水养殖废水低碳高氮的特点,采用间歇式活性污泥法(SBR)和好氧活性污泥添加硅藻土载体的方式,考察硅藻土载体和活性污泥共同作用下的好氧曝气系统对海水养殖废水中氨态氮(NH+4-N)、亚硝酸态氮(NO-2-N)和化学耗氧量(COD)的去除效果,以及对污泥沉降性能和硝化细菌特征的影响。实验结果表明,常温条件下,溶解氧(DO)≥4.5mg/L,p H控制在7.0~8.0,HRT为11 h,沉降时间10 min,反应器可以处理NH+4-N浓度在50 mg/L左右的海水养殖废水,NH+4-N和COD去除率分别达到98.93%左右和76.62%以上,NO-2-N出水浓度低于0.028 mg/L。载体污泥颗粒照片和扫描电镜结果表明,添加硅藻土载体内核后,颗粒污泥的成熟期缩短,颗粒的稳固度和沉降性能提高。在系统启动成功稳定运行后,通过FISH分析表明,在氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)成为优势菌群后,AOB大约占总菌群的33.5%,并且AOB与NOB菌群数量约为1∶1.33,AOB和NOB两大类菌群之和约占总菌群的77.2%,成为系统中优势菌群。  相似文献   

6.
研究有机碳源对SBBR厌氧氨氧化菌群等微生物的影响。采用16S rDNA序列与PCR-DGGE分析技术相结合的方法,对稳定运行的反应器内的活性污泥和生物膜样品,进行细菌多样性图谱分析,同时采用巢式PCR-DGGE技术对浮霉状菌属(Planctomycetes)细菌进行分析。结果表明,在有机碳源反应系统细菌条带数和多样性指数均高于无机系统,与活性污泥相比,生物膜表尤为明显。当进水不含有机碳源时,氨氧化细菌(ammonia oxidizing bacteria,AOB),厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,ANAMMOX)为优势功能菌;当进水含有机碳源时,系统中存在的AOB以亚硝化单胞菌(Nitrosomonas sp.)为优势菌群,同时存在反硝化菌,如索氏菌(Thauera sp.)以及厌氧氨氧化菌,它们共同作用完成N的去除。此外,与无机碳源系统相比,有机碳源的存在,有利于浮霉状菌的积累,但压缩了ANAMMOX的生存空间。本研究可为厌氧氨氧化工艺处理低C/N比有机废水提供了理论依据。  相似文献   

7.
低温降解苯胺高效菌群的筛选及特性研究   总被引:4,自引:1,他引:4  
在低温下对吉林化工厂污水处理厂曝气池活性污泥、低温生活污水处理系统曝气池活性污泥、实验室菌种库保存的高效菌剂以及以上三者的混合样等4种样品进行了变温培养、驯化,筛选到一组低温降解苯胺高效菌群--吉化污泥.该菌群对苯胺初始浓度不高于800 mg/L驯化培养基中苯胺的降解率可以达到100%,当初始苯胺浓度升到1000 mg/L时,去除率也能保持在60%以上;菌胶团形成能力较强,菌胶团形成指数达到21.2%;并且在高岭土絮凝试验中表现出很强的生物絮凝能力.该菌群的生长温度范围为5-35℃,最适培养温度15℃,属于耐冷菌群.适合作为生物强化菌剂投加到低温苯胺类废水生物处理系统中,提高处理系统的净化能力.葡萄糖作为共代谢基质对低温苯胺生物降解有促进作用,而无机氮源作用不明显.  相似文献   

8.
采用高温厌氧膨胀颗粒污泥床(EGSB)反应器处理低浓度、难降解聚氯乙烯(PVC)离心母液废水,以天津市经济技术开发区污水处理厂序批式活性污泥法(SBR)工艺好氧污泥和生物接触氧化法处理PVC离心母液废水污泥的混合污泥为接种污泥,以葡萄糖模拟废水为基质,不断增加PVC离心母液废水所占比例的方法驯化厌氧微生物,实现了系统的成功启动。系统启动期间,进水有机负荷(以COD计)和水力停留时间分别保持在0.2 kg/(m3.d)和50 h左右,出水COD去除率和pH分别稳定在80%和8.0左右。结果表明,添加共代谢基质能利用基质间的协同作用缓解有毒物质对微生物的毒性作用,显著提高了废水的可生化性。通过采用改变水质、保持稳定负荷实现EGSB反应器处理PVC离心母液废水的成功启动证明,该启动方法具有良好的稳定性和可靠性。  相似文献   

9.
为探讨直接生物法处理环氧氯丙烷废水的可行性,对其活性污泥驯化过程和生物降解性能进行了研究。结果表明,经过长时间的驯化,活性污泥能够适应高盐度环境。污泥驯化过程中,污泥浓度保持稳定,含盐量从0.3%增加到3%,微生物的活性和耗氧速率随之降低,COD的去除率由96%下降至75%左右。同时,对环氧氯丙烷废水的生物降解动力学进...  相似文献   

10.
在实验室规模续批式反应器(SBR)内,采用人工配水作为系统进水,以乙酸钠为唯一碳源,限制进水磷浓度,调整适宜的运行方式对活性污泥进行驯化,培养富集聚糖菌。90 d的培养过程中,系统的进水COD浓度始终维持在260mg/L左右,进水PO3-4-P浓度从20 mg/L逐渐降至2 mg/L,系统除磷能力逐渐丧失。系统内活性污泥的TP/TSS从40.5%降至10.4%,污泥中的糖原/TSS从14.5%增至38.2%,同时COD去除率能保持在90%以上,说明系统中成功富集聚糖菌。采用454高通量测序法分析该系统的活性污泥菌群结构,发现α-proteobacteria,β-proteobacteria,γ-proteobacteria 3类细菌占微生物总量的比例达83.78%。在属的等级上,Tepidicella占活性污泥菌群的比例最高,为20.60%。  相似文献   

11.
利用青霉菌P 1(Penicilliumsp )对 2种染浴废水中的染料进行吸附去除 ,研究结果表明 ,吸附处理 3h ,黑色和红色染浴废水色度基本被去除 ,去除率分别达 98 0 %和 74 5 % ,但去色处理后废水的CODCr值仍偏高。对去除色度的废水进一步用活性污泥进行深度处理 ,黑色和红色废水的CODCr去除率分别为 75 9%和 89 7%。青霉菌菌丝通过吸附作用从废水中抽提出的染料分子在有染料降解细菌L 1和L 2的降解池中脱色降解 ,菌丝吸附脱色能力得到再生。  相似文献   

12.
1.前言 限制曝气式间歇活性污泥法(以后用限制曝气活性污泥法来记述),是采用曝气时间对活性污泥微生物的栖息环境进行控制,它可以处理高浓度有机废水,是间歇活性污泥法的一种改革的形式. 为了使容易发生污泥膨胀的食品等工厂废水,达到高效率且稳定的处理,对限制曝气式间歇活性污泥法进行了多年研究,并已获得了几项成果.作者采用这一成果的试验  相似文献   

13.
采用PVA冷冻-解冻法固定传统活性污泥,用无机硝化菌培养基对其进行活性恢复和驯化培养.用该法制备的固定化活性污泥颗粒在三相流化床中处理氨氮废水,结果表明固定化活性污泥颗粒可处理低浓度氨氮废水,当氨氮浓度为60mg/L左右,固定化颗粒填充率9%,水力停留时间8 h,COD为400mg/L时,NH4+-N去除率达82.5%以上.实验还表明,该法制作的活性污泥颗粒寿命在3个月以上.  相似文献   

14.
在厌氧序批式反应器(ASBR)中采用优势菌群对活性污泥进行强化,驯化出强化活性污泥。与普通活性污泥处理啤酒废水对照显示,强化活性污泥较普通厌氧污泥驯化成熟时间短,处理效果更稳定、更有效,CODcr去除率最高达95%。培育出的强化活性污泥颗粒粒径为1.5~2.5cm,较普通活性污泥颗粒粒径更大,更均匀。  相似文献   

15.
采用常规活性污泥法、间歇曝气活性污泥法和SBR法对高浓度氯霉素废水进行了对比处理试验。结果表明 ,SBR法优于其他两种方法。当进水COD浓度为 4 910mg L ,COD容积负荷为 9.8kg m3·d ,去除率可达 91.6 %。当废水中NH+4约为 4 5 5mg L时 ,脱氮率可达 6 0 %左右。污泥指数稳定在 88左右。  相似文献   

16.
活性污泥法处理低浓度煤气化—焦化含酚废水   总被引:1,自引:0,他引:1  
本文探讨了活性污泥法处理低浓度煤气化-焦化含酚混合废水的可行性。主要研究了低浓度煤气化-焦化含酚混合废水的生化处理效果与废水配比以及生化曝气时间之间的关系。  相似文献   

17.
优势菌的筛选及其强化活性污泥好氧反硝化的研究   总被引:1,自引:0,他引:1  
利用含活性污泥提取物的贫培养基筛选SBR系统中的好氧异养优势菌。结合自然温度(15~20℃)、延长培养时间等条件来提高菌群的可培养性。从SBR活性污泥系统中分离出5种细菌。4株去除COD优势菌,1株异养硝化细菌,能在好氧条件下实现对总氮的去除。反应池底采用边缘对称曝气,反应池内细菌在时间顺序和空间位置上循环经历好氧过程及微氧过程。将PVA铝盐法固定的细菌对反应器进行生物强化。结果显示,在好氧工艺的条件下,投加优势菌群后,与未加优势菌群的反应器相比,可以显著改善污泥的沉降性能,COD、NH3-N和TN降解率显著提高,分别达到98%、97%和90%。生物强化作用明显,反应器内具有良好的好氧反硝化环境。  相似文献   

18.
研究了用化学氧化/活性污泥法两步处理某农药厂甲胺磷农药废水。用过氧化氢作氧化剂对废水进行预处理,使废水的可生化比从0.24提高到0.40;再用传统的活性污泥法进行两级处理,可使废水中的硫化物除去75%,出水达标;COD去除率70%,出水300mg/L以下,接近国家污水排放标准。  相似文献   

19.
腌制废水具有高有机物、含盐量高(7%左右)等特点,废水可生化性在0.4左右,其处理的最大难点在于生化性较差影响正常生物方法的处理和生化段高盐生物系统的建立;本实验主要针对水解酸化工艺,考察了利用阶段培养法建立高盐生物系统的效果及温度对高盐生物系统的影响,实验结果表明,在中温((28±2)℃)下利用阶段培养法可以建立良好的高盐生物系统,对含盐量在5.5%左右的腌制废水处理效果良好,废水B/C由0.4提高为0.6左右,COD去除率为23.81%,微生物活性温度在28.11 mg/L,挥发性脂肪酸(VFA)为34 mmol/L。  相似文献   

20.
为了探究石油炼化废水中COD和毒性物质对厌氧氨氧化-反硝化细菌混培物的影响,利用已具有高效脱氮性能的细菌混培物建立生物脱氮反应器进行连续驯化实验,实现进水COD和毒性物质比例的增加,并结合MPN-PCR技术对驯化前后两类菌群数量进行检测。结果发现,驯化前后厌氧氨氧化细菌数目由7.549×10~(14)个·g~(-1)减为8.212×10~8个·g~(-1),脱氮生化活性仍保持在40.2%左右;反硝化细菌数目由3.523×10~6个·g~(-1)增为4.693×10~(16)个·g~(-1),脱氮生化活性增加了5.76倍左右。结果表明,厌氧氨氧化细菌和反硝化细菌混培脱氮体系的脱氮生化活性未与细菌数目呈正相关性变化,COD和毒性物质对体系产生了不同程度的影响;厌氧氨氧化细菌比反硝化细菌对石油炼化废水毒性的作用更敏感;混培脱氮体系在一定程度上可以有效地抵抗石油炼化废水高浓度COD、高毒性物质对厌氧氨氧化生理生化脱氮过程的负面影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号