首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Historically, environmental regulatory programs designed to protect public health have monitored pollutants only in geophysical carrier media (for example, outdoor air, streams, soil). Field studies have identified a gap between the levels observed in geophysical carrier media and the concentrations with which people actually come into contact: their daily exposures. A new approach--Total Human Exposure (THE)--has evolved to fill this gap and provide the critical data needed for accurately assessing public health risk. The THE approach considers a three-dimensional "bubble" around each person and measures the concentrations of all pollutants contacting that bubble, either through the air, food, water, or skin. Two basic THE approaches have emerged: (1) the direct approach using probability samples of populations and measuring pollutant concentrations in the food eaten, air breathed, water drunk, and skin contacted; and (2) the indirect approach using human activity pattern-exposure models to predict population exposure distributions. Using the direct approach, EPA has conducted over 20 field studies for pollutants representing four groups--volatile organic compounds, carbon monoxide, pesticides, and particles--in 15 cities in 12 states. The indirect modeling approach has been applied to several of these pollutants. Additional research is needed in a great variety of areas. Even from the few projects completed thus far, the THE approach has yielded a rich new data base for risk assessments and has provided many surprises about the relative contribution of various pollutant sources to public health risk.  相似文献   

2.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   

3.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover, the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   

4.
A method for setting air quality standards for long-term cumulative exposures of a population based on epidemiological studies has been developed. It uses exposure estimates interpolated from monitoring stations to zip code centroids, each month applied to zip code by month residence histories of the population. Two alternative cumulative exposure indices are used—hours in excess of a threshold, and the sum of concentrations above a threshold. The indices are then used with multiple logistic regression models for the health outcome data to form dose response curves for relative risk, adjusting for covariates. These curves are useful for determination of at what exposure amounts and threshold levels, effects which have both statistical and public health significance begin to occur. The method is applied to a ten year follow-up of a sub cohort of 7,343 members of the National Cancer Institute-funded Adventist Health Study. Up to 20 years of residence history was available. Analysis for prevalence of symptoms was conducted for four air pollutants— total oxidants, sulfur dioxide, nitrogen dioxide, and total suspended particulates. For each pollutant, cumulated exposures were calculated above each of five different thresholds. Statistically significant effects were noted for total suspended particulates, total oxidants, sulfur dioxide, past and passive smoking.  相似文献   

5.
This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework. In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk.
Implications:A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-off between coal purchase cost and health risk.  相似文献   

6.
Abstract

Air quality indices currently in use have been criticized because they do not capture additive effects of multiple pollutants, or reflect the apparent no-threshold concentration-response relationship between air pollution and health. We propose a new air quality health index (AQHI), constructed as the sum of excess mortality risk associated with individual pollutants from a time-series analysis of air pollution and mortality in Canadian cities, adjusted to a 0–10 scale, and calculated hourly on the basis of trailing 3-hr average pollutant concentrations. Extensive sensitivity analyses were conducted using alternative combinations of pollutants from single and multi-pollutant models. All formulations considered produced frequency distributions of the daily maximum AQHI that were right-skewed, with modal values of 3 or 4, and less than 10% of values at 7 or above on the 10-point scale. In the absence of a gold standard and given the uncertainty in how to best reflect the mix of pollutants, we recommend a formulation based on associations of nitrogen dioxide, ozone, and particulate matter of median aerodynamic diameter less than 2.5 µm with mortality from single-pollutant models. Further sensitivity analyses revealed good agreement of this formulation with others based on alternative sources of coefficients drawn from published studies of mortality and morbidity. These analyses provide evidence that the AQHI represents a valid approach to formulating an index with the objective of allowing people to judge the relative probability of experiencing adverse health effects from day to day. Together with health messages and a graphic display, the AQHI scale appears promising as an air quality risk communication tool.  相似文献   

7.
Previous studies have explored the association between air pollution levels and adverse birth outcomes such as lower birth weight. Existing literature suggests an association, although results across studies are not consistent. Additional research is needed to confirm the effect, investigate the exposure window of importance, and distinguish which pollutants cause harm.

We assessed the association between ambient pollutant concentrations and term birth weight for 1,548,904 births in TX from 1998 to 2004. Assignment of prenatal exposure to air pollutants was based on maternal county of residence at the time of delivery. Pollutants examined included particulate matter with aerodynamic diameter ≤10 and ≤2.5 µm (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). We applied a linear model with birth weight as a continuous variable. The model was adjusted for known risk factors and region. We assessed pollutant effects by trimester to identify biological exposure window of concern, and explored interaction due to race/ethnicity.

An interquartile increase in ambient pollutant concentrations of SO2 and O3 was associated with a 4.99-g (95% confidence interval [CI], 1.87–8.11) and 2.72-g (95% CI, 1.11–4.33) decrease in birth weight, respectively. Lower birth weight was associated with exposure to O3 in the first and second trimester, whereas results were not significant for other pollutants by trimester. A positive association was exhibited for PM2.5 in the first trimester. Effects estimates for PM10 and PM2.5 were inconsistent across race/ethnic groups.

Current ambient air pollution levels may be increasing the risk of lower birth weight for some pollutants. These risks may be increased for certain racial/ethnic groups. Additional research including consideration of improved methodology is needed to investigate these findings. Future studies should examine the influence of residual confounding.

Implications: This is one of the most comprehensive studies examining criteria air pollutants and lower birth weight in Texas. Our findings confirm results found previously for adverse effects of the air pollutant SO2 on lower birth weight. Results from our study suggest that adverse pregnancy outcomes such as lower birth weight can occur even while maintaining air pollution levels below regulatory standards. Future studies should incorporate the assessment of differential pollutant exposure as well as effect estimates by race/ethnicity with individual and community-level social factors in order to enhance our understanding of how physical, social, and host factors influence birth outcomes.

Supplemental Materials: Supplementary information relating to characteristics of excluded births, distribution of air pollutant monitors by pollutant, and correlation coefficients of the air pollutants is available in the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

8.
A quantitative approach is presented for selecting air quality standards which take into account pollutant gas-aerosol synergistic effects. These synergistic health effects have been postulated to be due to the adsorption or absorption of the pollutant gas by the aerosol particles. The approach presented in this paper assumes that the synergistic toxic agent is the adsorbed pollutant gas. Therefore, limiting the concentration of the adsorbed pollutant gas limits the magnitude of the synergistic effects. The concentration of the adsorbed pollutant gas is related to the concentrations of the gaseous phase pollutant gas and the atmospheric aerosol using the Langmuir adsorption isotherm. An example is presented of the selection of air quality standards for sulfur dioxide and the atmospheric aerosol using concentration data for these two pollutants along with health effect data.  相似文献   

9.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   

10.
Air quality indices currently in use have been criticized because they do not capture additive effects of multiple pollutants, or reflect the apparent no-threshold concentration-response relationship between air pollution and health. We propose a new air quality health index (AQHI), constructed as the sum of excess mortality risk associated with individual pollutants from a time-series analysis of air pollution and mortality in Canadian cities, adjusted to a 0-10 scale, and calculated hourly on the basis of trailing 3-hr average pollutant concentrations. Extensive sensitivity analyses were conducted using alternative combinations of pollutants from single and multipollutant models. All formulations considered produced frequency distributions of the daily maximum AQHI that were right-skewed, with modal values of 3 or 4, and less than 10% of values at 7 or above on the 10-point scale. In the absence of a gold standard and given the uncertainty in how to best reflect the mix of pollutants, we recommend a formulation based on associations of nitrogen dioxide, ozone, and particulate matter of median aerodynamic diameter less than 2.5 microm with mortality from single-pollutant models. Further sensitivity analyses revealed good agreement of this formulation with others based on alternative sources of coefficients drawn from published studies of mortality and morbidity. These analyses provide evidence that the AQHI represents a valid approach to formulating an index with the objective of allowing people to judge the relative probability of experiencing adverse health effects from day to day. Together with health messages and a graphic display, the AQHI scale appears promising as an air quality risk communication tool.  相似文献   

11.
12.
Average 21st century concentrations of urban air pollutants linked to cardiorespiratory disease are not declining, and commonly exceed legal limits. Even below such limits, health effects are being observed and may be related to transient daytime peaks in pollutant concentrations. With this in mind, we analyse >52,000 hourly urban background readings of PM10 and pollutant gases throughout 2007 at a European town with legal annual average concentrations of common pollutants, but with a documented air pollution-related cardiorespiratory health problem, and demonstrate the hourly variations in PM10, SO2, NOx, CO and O3. Back-trajectory analysis was applied to track the arrival of exotic PM10 intrusions, the main controls on air pollutants were identified, and the typical hourly pattern on ambient concentrations during 2007 was profiled. Emphasis was placed on “worst case” data (>90th percentile), when health effects are likely to be greatest. The data show marked daytime variations in pollutants result from rush-hour traffic-related pollution spikes, midday industrial SO2 maxima, and afternoon O3 peaks. African dust intrusions enhance PM10 levels at whatever hour, whereas European PM incursions produce pronounced evening peaks due to their transport direction (across an industrial traffic corridor). Transient peak profiling moves us closer to the reality of personal outdoor exposure to inhalable pollutants in a given urban area. We argue that such an approach to monitoring data potentially offers more to air pollution health effect studies than using only 24 h or annual averages.  相似文献   

13.
The Division of Air Pollution Control, Illinois Environmental Protection Agency, has conducted an ambient air quality monitoring project focusing on carbon monoxide levels in and around several indirect sources. An analysis of the data indicates that highway-type pollutant emissions have the greatest impact on receptors in the vicinity of indirect sources. This implies that the principal, localized constraint on the siting of indirect sources will be the carbon monoxide generated on public roadways servicing those indirect sources. Clearly, adequate procedures must be developed to link such highway-type emissions to pollutant concentrations. An area-source model and a line-source model were tested using the data generated during the monitoring project. Favorable results were achieved using the line-source model. The proper siting of indirect sources involves the allocation of roadway capacity by the governmental units responsible for transportation network design, working in conjunction with regional planning bodies. A regulatory structure is suggested which emphasizes a regional approach, and an example of an air quality allocation scheme is given. The methodology is applicable to all automotive air pollutants although, in general, localized sensitivity is lost for N02 and photochemical oxi-dants.  相似文献   

14.
Effects of various air pollutants on economically important crops and ornamentals have been studied since before the turn of the century.

Summaries of this research on the effects of air pollutants, that have appeared in criteria documents developed by the Environmental Protection Agency, should be reviewed with respect to differences in plant susceptibility found in various regions of the country. These susceptibility differences are associated with variations in both environmental conditions and distribution of pollutants. Research efforts on air pollution injury to vegetation have often been poorly coordinated leaving many gaps in our knowledge. A better assessment of the impact of air pollution on vegetation is required to attain realistic controls for pollutants affecting agriculture. Research areas of major concern include: baseline information on effects of pollutants on agricultural productivity; dose-response information to support predictive mathematical models for acute and chronic studies of growth, yield, and quality effects; effects of pollutants interacting with other pollutants and with insects and plant diseases; mechanisms of pollutant action; genetic changes related to pollutant effects; effects of environmental stresses on plant response to pollutants; evaluation of plants including soil microbes as pollutant sinks; development of techniques to minimize pollutant effects; and, the effects of agricultural chemicals as air pollutants. There is a need for studies that consider the whole plant in its natural environment. Conceptual models interrelating pollutant effects and their interactions and ultimately mathematical models will be needed to develop an intelligent approach to land management. The effects of agriculturally produced pollutants on plants and other receptors must be identified and quantified.  相似文献   

15.
The United States Environmental Protection Agency (EPA) developed the Pollutant Standards Index (PSI) in order to provide the public with an overall assessment of daily air quality. PSI values are determined from measured concentrations of five criteria air pollutants carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide, and particulate matter (PM-10). In general, the PSI can be considered a useful tool in the assessment of air quality as it relates to health effects. However, the current method of PSI calculation is subject to certain inherent limitations. These limitations include the fact that the PSI neglects the role of synergism between the individual pollutants in affecting air quality and health. It is very likely that the combination of certain pollutants is more harmful than each acting individually. Since the general population is exposed to more than one of the criteria pollutants at a given time, revising the current PSI methodology to account for such synergism would be useful and helpful to the public. In the current work, two methodologies for synergistic PSI calculation have been evaluated. The first option (Option 1) is dominated by the principle of threshold levels. When further research determines more accurate levels, the methodology may be of value for future synergistic PSI evaluations. The second option (Option 2) is an attempt to incorporate the correlation of pollutant concentrations with health effects (as determined by increased hospital admissions) into the synergism evaluation. The underlying philosophy of this methodology holds the most promise for accurate synergistic PSI calculation. Comprehensive research and experimentation would be beneficial in creating a more accurate PSI function equation. The main advantage of these hypothetical methodologies is that the current PSI method would still be valid for initial PSI calculation. The dissimilarity is in the calculation of the critical (i.e. reportable) PSI value. It is no longer a matter of the highest PSI value among the pollutants being an accurate representative of air quality. Instead, each of the PSI values obtained is applied to a separate equation to determine a synergistic PSI. When above-average pollutant concentrations are recorded, the possibility of synergistic behavior increases and would be demonstrated with the application of both options. The advantage of Option 1 (versus Option 2) is that the equation was derived from a recognized approach to synergism in combination with the ideas of threshold levels. The advantage of Option 2 is that it is an attempt to correlate concentration levels with health effects observed in the health industry. It is possible that a combination of both philosophies will eventually lead to the development of a synergistic PSI methodology worthy of approval by the EPA.  相似文献   

16.
ABSTRACT

Relationships between ambient levels of selected air pollutants and pediatric asthma exacerbation in Atlanta were studied retrospectively. As a part of this study, temporal and spatial distributions of ambient ozone concentrations in the 20-county Atlanta metropolitan area during the summers of 1993, 1994, and 1995 were assessed. A universal kriging procedure was used for spatial interpolation of aerometric monitoring station data. In this paper, the temporal and spatial distributions of ozone are described, and regulatory and epidemiologic implications are discussed. For the study period, the Atlanta ozone nonattainment area based on the 1-h, exceedance-based standard of 0.12 ppm is estimated to expand—from 56% of the Atlanta MSA by area and 71% by population to 88% by area and 96% by population—under the new 8-h, concentration-based standard of 0.08 ppm. Regarding asthma exacerbation, a 4% increase in pediatric asthma rate per 20-ppb increase in ambient ozone concentration was observed (p-value = 0.001), with ambient ozone level representing a general indicator of air quality due to its correlations with other pollutants. The use of spatial ozone estimates in the epidemiologic analysis demonstrates the need for control of demographic covariates in spatiotem poral assessments of associations of ambient air pollutant concentrations with health outcome.  相似文献   

17.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

18.
Abstract

A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

19.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


20.
ABSTRACT

According to the literature, it is estimated that outdoor air pollution is responsible for the premature death in a range from 3.7 to 8.9 million persons on an annual basis across the world. Although there is uncertainty on this figure, outdoor air pollution represents one of the greatest global risks to human health. In North America, the rapid evolution of technologies (e.g., nanotechnology, unconventional oil and gas rapid development, higher demand for fertilizers in agriculture) and growing demand for ground, marine and air transportation may result in significant increases of emissions of pollutants that have not been carefully studied so far. As a result, these atmospheric pollutants insufficiently addressed by science in Canada and elsewhere are becoming a growing issue with likely human and environmental impacts in the near future. Here, an emerging pollutant is defined as one that meets the following criteria: 1) potential or demonstrated risk for humans or the environment, 2) absence of Canada-wide national standard, 3) insufficient routine monitoring, 4) yearly emissions greater than one ton in Canada, 5) insufficient data concerning significant sources, fate, and detection limit, and 6) insufficiently addressed by epidemiological studies. A new methodology to rank emerging pollutants is proposed here based on weighting multiple criteria. Some selected emerging issues are also discussed here and include the growing concern of ultrafine or nanoparticles, growing ammonia emissions (due to rapid expansion of the agriculture), increased methane/ethane/propane emissions (due to the expanding hydraulic fracturing in the oil and gas sector) and the growing transportation sector. Finally, the interaction between biological and anthropogenic pollution has been found to be a double threat for public health. Here, a multidisciplinary and critical overview of selected emerging pollutants and related critical issues is presented with a focus in Canada.

Implications: This overview paper provides a selection methodology for emerging pollutants in the atmospheric environment. It also provides a critical discussion of some related issues. The ultimate objective is to inform about the need to 1) address emerging issues through adequate surface monitoring and modeling in order to inform the development of regulations, 2) reduce uncertainties by geographically mapping emerging pollutants (e.g., through data fusion, data assimilation of observations into air quality models) which can improve the scientific support of epidemiological studies and policies. This review also highlights some of the difficulties with the management of these emerging pollutants, and the need for an integrated approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号