首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
添加秸秆对废橡胶/塑料共热解制油特性的影响   总被引:2,自引:0,他引:2  
针对难降解类垃圾资源化处理的难题,利用固定床系统对废弃橡胶/塑料以不同比例掺混进行了共热解制油实验,研究掺混燃料中添加少量秸秆对共热解特性的影响。结果表明,橡胶和塑料共热解,较各自热解的得油率和油发热量增加,橡胶/塑料比例2∶3~3∶2时,制油收益率最佳;添加秸秆,能够促进热解反应提前进行,进一步提高得油率和油发热量同时提高了固体残渣的热值,则制取热解油的收益率明显提高。橡胶/塑料比例4∶1的混合燃料,添加秸秆共热解获得了最高得油率,油发热量为39.93 MJ/kg。  相似文献   

2.
为探索生活垃圾催化热解液体产物特性变化规律,选取Na2CO3、CaO、Fe2O33种催化剂,利用固定床实验、红外分析(FT-IR)进行生活垃圾热解液体产物产率和组分特性研究.结果表明,热解终温600℃无催化剂时,生活垃圾热解液产率为39.80 wt%,添加3种催化剂后热解液产率均降低;生活垃圾分别添加1%的Na2CO3和CaO后,热解油氧含量由22.49%分别降低到20.12%和18.53%,低位热值由30.30 MJ/kg分别提高到33.79和32.74 MJ/kg;无催化剂时热解油成分为脂肪类、含氧化合物及少量芳香类混合物,加催化剂后热解油中芳香类物质峰面积比例显著增加,而含氧化合物峰面积比例降低,羟基类及羧酸类含氧化合物峰面积比例明显减少,其他含氧物峰面积比例却增加;CaO催化效果较明显,生活垃圾添加1%的CaO热解油中芳香类物质峰面积比例从4.36%增加到29.46%,含氧化合物峰面积比例由49.42%降低到23.12%,其中羟基类和羧酸类化合物峰面积比例分别由34.03%和10.65%降低到0.00%和3.34%,其他含氧化合物峰面积比例由4.73%增加到19.77%.  相似文献   

3.
为了促进城市污泥热解工艺的工程化应用,组建了污泥热解系统、热解产物分离回收利用系统、废气净化排放系统于一体较完整的热解中试装置,在实现污泥有效处置的同时也实现了高值能源回收利用。中试工况优化,较好工况为:热解时间30-40 min,热解终温450-500℃,在此条件下,干化污泥(含水率5%)减量率为50%;热值为33.8 MJ/kg的热解油产率为17.1%左右。通过对中试运行效果的评估,得出热解油和热解气两者能量或污泥炭自身能量可供干化污泥热解本身所需能量,从而为推动污水污泥热解工艺的工程化利用提供了支持。  相似文献   

4.
针对餐厨垃圾生物处理过程中产生的有机废物,为了实现餐厨垃圾的资源化利用,使用热重分析仪对其典型组分:塑料、骨头及难降解生物质,进行了单独及混合热重(TG)特性研究。结果表明:难降解生物质(BRB)、骨头等生物质类物质失重温度较低,最大失重率温度分别为325和341℃,塑料的失重温度较高,最大失重率温度在475℃;通过对混合物料的热重曲线和动力学分析,在较低温度(400℃),塑料和骨头对热解过程有一定的抑制作用,而在高温(400℃)状态下,二者在热解过程中有协同作用;含有3种组分的实际物料在166~361℃条件下热解过程符合二维相界反应(函数为2(1-α)1/2);而在361~550℃热解符合三级动力学反应(函数为(1-α)3),在整个温度阶段(166~550℃)中的实际活化能低于模拟活化能(59.6986.57 k J·mol-1),表明3种物料混合热解有协同作用。  相似文献   

5.
餐厨垃圾厌氧发酵特性的研究   总被引:14,自引:4,他引:10  
为了实现餐厨垃圾低成本现场能源化处理,利用单相法,采用正交试验法,研究了接种率、温度和含水率对餐厨垃圾厌氧发酵过程中运行特性的影响。结果表明,接种率、含水率、发酵温度以及它们之间的交互作用对餐厨垃圾产气效果影响显著,其中以接种率与温度的交互作用影响最为显著,其次是含水率。采用单相法进行55℃高温厌氧发酵,保证65%左右的接种率和90%以上的含水率,完全可以实现餐厨垃圾现场处理。  相似文献   

6.
分别应用管式炉反应器和热重分析手段对印刷线路板废弃物的热解行为和热解动力学进行了实验研究.在管式炉中,研究不同的热解温度:700~950℃,对产物分布和气体成分分布的影响.实验结果表明:PCB热解气体的主要成分是H2和CO2,气体的热值较低,仅为2.09~5.41 MJ/m3,PCB不适合以气体产物为目标的能源利用方式.应用Friedman方法对PCB的热解动力学进行了研究,求得PCB的热解动力学参数分别是:表观活化能190.92 kJ/mol,反应级数5.97,指前因子lnA47.14 min-1.  相似文献   

7.
邵晨  于鑫  蒋平  田兴军 《环境工程学报》2014,8(9):3971-3977
为了探索不同调理剂对微生物降解餐厨垃圾效果的影响,本实验选取了木屑(桦木)、米糠、泥炭、花生壳、稻壳等材料分别作为主要调理剂,以餐厨垃圾的重量减量率作为评价降解效果指标,测定实验过程中的温度、含水率、pH值、微生物生物量及重量的变化。实验结果表明,影响餐厨垃圾降解效果主要因素有温度和含水率;以木屑和米糠为主要调理剂的保温性能最优,其余材料热量散失较快;以50%木屑处理的调理剂含水率适宜,能达到最适含水率要求(50%);同时,以50%木屑(桦木)为主要调理剂处理的减量率最高。  相似文献   

8.
茅草添加与温度变化对餐厨垃圾厌氧水解产酸的影响   总被引:1,自引:0,他引:1  
比较了茅草添加在温度变化条件下对餐厨垃圾厌氧水解过程小分子有机酸产量的影响,提出一种新型餐厨垃圾的资源化方式。研究结果显示,餐厨垃圾在55℃条件下厌氧水解主要产物为乳酸,达到25.7 g/L,其干物质转化率可以达到32.1% (g TS),而餐厨+茅草处理在同样条件下的乳酸产量为20.1 g/L,干物质转化率为25.1%。温度下降为37℃后继续进行的的厌氧水解,得到的主要产物是乙酸、丙酸和丁酸,餐厨处理和餐厨+茅草处理这两者的峰值分别为6.5、2.8、8.0和6.1 g/L、2.7 g/L和5.9 g/L。结果显示茅草添加可以在一定程度上调节水解产物的比例,而温度变化可以调控小分子有机酸的产量。本研究结果表明,厌氧水解是一种有潜力的小分子有机酸生产与餐厨垃圾资源化处理途径。  相似文献   

9.
提出了一种利用餐厨废油为热交换介质,在常压下对城市污水厂污泥进行油炸干化制成固体燃料,以实现城镇两大废弃物一污泥和餐厨废油综合处置的方法。以大豆油模拟餐厨废油,研究了污泥油炸干燥特性及过程影响参数。实验结果表明,污泥经油炸干化后,干基含水率从初始的4.56kg/kg降低至0.05kg/kg,干基含油率升为0.37~0.47kg/kg,干污泥热值达到21.551~24.082MJ/kg,是一种高热值固体燃料。油温对污泥油炸干化过程影响显著,当油温从120℃升至180℃时,污泥干燥时间从28min缩短至4min。实验条件下,1t餐厨废油可处理约8.3t湿污泥。  相似文献   

10.
印刷线路板废弃物的热解与动力学实验研究   总被引:2,自引:0,他引:2  
分别应用管式炉反应器和热重分析手段对印刷线路板废弃物的热解行为和热解动力学进行了实验研究。在管式炉中,研究不同的热解温度:700~950℃,对产物分布和气体成分分布的影响。实验结果表明:PCB热解气体的主要成分是H2和CO2,气体的热值较低,仅为2.09~5.41MJ/m^3,PCB不适合以气体产物为目标的能源利用方式。应用Friedman方法对PCB的热解动力学进行了研究,求得PCB的热解动力学参数分别是:表观活化能190.92kJ/mol,反应级数5.97,指前因子lnA47.14min^-1。  相似文献   

11.
以润滑油废白土为原料,利用电热解法,研究了热解终温、加热速率和CaO添加量对热解产物的影响。实验结果表明:热解终温对热解产物的影响最为显著。随着热解终温的升高,不凝气产量和产油率均迅速增加。当热解终温达到600℃时,其增加的速率逐渐缓慢增大。当控制热解终温为800℃、加热速率为16℃/min、CaO添加量为0.5%时,富氢气体产量为189.2 L/kg,气体中主要成分为H2和CH4,其含量分别为27.97%和41.64%;热解残渣含油率和重金属溶出物均低于标准规定值,热解油产率为10.98%,回收率为38.94%,其主要成分为汽油、柴油和重油3部分组成,分别含19.13%、31.35%和49.52%。  相似文献   

12.
Abstract

Raw poultry litter has certain drawbacks for energy production such as high ash and moisture content, a corrosive nature, and low heating values. A combined solution to utilization of raw poultry litter may involve fractionation and pyrolysis. Fractionation divides poultry litter into a fine, nutrient-rich fraction and a coarse, carbon-dense fraction. Pyrolysis of the coarse fraction would remove the corrosive volatiles as bio-oil, leaving clean char. This paper presents the effect of fractionation and pyrolysis process parameters on the calorific value of char and on the characterization of bio-oil. Poultry litter samples collected from three commercial poultry farms were divided into 10 treatments that included 2 controls (raw poultry litter and its coarse fraction having particle size greater than 0.85 mm) and 8 other treatments that were combinations of three factors: type (raw poultry litter or its coarse fraction), heating rate (30 or 10 °C/min), and pyrolysis temperature (300 or 500 °C). After the screening process, the poultry litter samples were dried and pyrolyzed in a batch reactor under nitrogen atmosphere and char and condensate yields were recorded. The condensate was separated into three fractions on the basis of their density: heavy, medium, and light phase. Calorific value and proximate and nutrient analysis were performed for char, condensate, and feedstock. Results show that the char with the highest calorific value (17.39 ± 1.37 MJ/kg) was made from the coarse fraction at 300 °C, which captured 68.71 ± 9.37% of the feedstock energy. The char produced at 300 °C had 42 ± 11 mg/kg arsenic content but no mercury. Almost all of the Al, Ca, Fe, K, Mg, Na, and P remained in the char. The pyrolysis process reduced ammoniacal-nitrogen (NH4-N) in char by 99.14 ± 0.47% and nitrate-nitrogen (NO3-N) by 95.79 ± 5.45% at 500 °C.  相似文献   

13.
油田含油污泥热解制备烟气脱硫剂   总被引:1,自引:0,他引:1  
为实现油田含油污泥深度资源化,针对高含油的孤岛采油厂含油污泥采用热解处理,回收油气资源的同时将热解残渣制备成烟气脱硫剂。以苯吸附值和热解残渣含油率为基准对热解工艺进行了优化,对热解油品和残渣进行分析,热解残渣经过后续处理进行了烟气脱硫性能评价。通过正交实验得到热解最佳工艺条件为:氮气保护下,热解温度550℃,热解时间4h,升温速率10℃/min。此时苯吸附值为60.12mg/g,热解残渣含油率为0.29%。最佳工艺条件下,热解油品产率可达10%左右,回收率大于65%,热裂解作用明显,热解油品的品质较好,产生的不凝气体可以作为洁净燃料气;热解残渣经过后续处理,可用于脱除烟气中的SO2,吸附脱硫能力较好,穿透硫容达到3%以上。  相似文献   

14.
热解含油污泥制备吸附剂及热解过程的优化   总被引:4,自引:1,他引:3  
为资源化利用油田含油污泥,对高含油的孤岛采油厂含油污泥进行热解处理研究,以苯酚吸附值为基准对热解工艺过程进行优化,并采用ICP-MS、元素分析仪、气相色谱质谱仪和SEM对热解油品和残渣性质进行分析;正交实验和单因素实验结果相一致,热解最佳工艺条件为:N2保护下,热解温度550℃,热解时间4 h,升温速率10℃/min,此时苯酚吸附值为29.26 mg/g。通过对热解残渣苯酚吸附值为基准进行正交实验极差分析,热解温度的影响最大,其次是热解时间,最后是加热速率。SEM结果显示,热解含油污泥制备的固体残渣具有丰富的微米孔,可将其制备成多孔固体吸附剂。初步研究结果表明,含油污泥热解处理实现了无害化和资源化目的,满足国家节能减排的战略要求和农用污泥排放标准。  相似文献   

15.
Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.  相似文献   

16.
对直流电晕自由基簇射处理PCB热解废气进行详细的模拟研究。在推导计算直流电晕簇射一次自由基产率和构建完整化学动力学机理体系的基础上,采用Chemkin软件栓塞流反应模型对不同条件下的热解废气降解过程进行详细的动力学模拟,并获得重要的数据参考。结果表明,输入气体温度为298~323K和电极气湿度接近0.06mg/mL是相对较好的降解条件。在此条件下,处理FR4型PCB热解气(降解率达85%以上)所需消耗的能量仅为1.044(kW·h)/kg。  相似文献   

17.
利用热重分析(TGA)研究船舶塑料垃圾在不同升温速率和不同气氛下的热解特性,并得到了热解动力学参数。结果表明,船舶塑料垃圾的热解过程主要有3个阶段,比一般塑料热解复杂;随着升温速率增大,最大热解速率和最大热解速率温度等热解特性参数也增大,反应变得更剧烈;N2/CO2比为4∶1时,热解反应进行得最完全,固体残留率最少。动力学分析表明,采用3个连续一级反应模型能很好地拟合实验数据;不同的升温速率和气氛比对反应各阶段活化能均有不同程度的影响。  相似文献   

18.
对直流电晕自由基簇射处理PCB热解废气进行详细的模拟研究。在推导计算直流电晕簇射一次自由基产率和构建完整化学动力学机理体系的基础上,采用Chemkin软件栓塞流反应模型对不同条件下的热解废气降解过程进行详细的动力学模拟,并获得重要的数据参考。结果表明,输入气体温度为298~323 K和电极气湿度接近 0.06 mg/mL是相对较好的降解条件。在此条件下,处理FR4型PCB热解气(降解率达85%以上)所需消耗的能量仅为1.044 (kW·h)/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号