首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to obtain information about the degradation of t-butyl methyl ether (MTBE; (CH(3))(3)C-O-CH(3)) in atmospheric water droplets (rain, clouds, fog). These water droplets contain hydrogen peroxide and iron ions, which are a source of the powerful oxidising radical OH degrees, particularly under solar irradiation (photo-Fenton reaction). MTBE was chosen for this work because of its current use as an oxygenated additive in gasoline.In this study we found that MTBE is not stable in the atmosphere. More than 15 intermediate products were identified, five of which were quantified (t-butyl formate (TBF), methyl acetate (MA), t-butyl alcohol (TBA), acetone (AC), formaldehyde). The evaluation of the disappearance kinetic of the main intermediate compounds shows the following activity pattern k((TBA))>k((MTBE))>k((TBF)),k>((AC)). Acetone was found to be about 15 times more stable than MTBE in atmospheric conditions. The degradation pathways are discussed on the basis of these identifications and on the degradation of the main intermediate products in similar conditions to MTBE.  相似文献   

2.
In this paper, the treatment of real groundwater samples contaminated with gasoline components, such as benzene, toluene, ethylbenzene, and xylene (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and other gasoline constituents in terms of total petroleum hydrocarbons as gasoline (TPHg) by an ozone/UV process was investigated. The treatment was conducted in a semi-batch reactor under different experimental conditions by varying ozone gas dosage and incident UV light intensity. The groundwater samples contained BTEX compounds, MTBE, TBA, and TPHg in the ranges of 5-10000, 3000-5500, 80-1400, and 2400-20000mugl(-1), respectively. The ozone/UV process was very effective compared to ozonation in the removal of the gasoline components from the groundwater samples. For the various gasoline constituents, more than 99% removal efficiency was achieved for the ozone/UV process and the removal efficiency for ozonation was as low as 27%. The net ozone consumed per mol of organic carbon (from BTEX, MTBE, and TBA) oxidized varied in the range of 5-60 for different types of groundwater samples treated by the ozone/UV process. In ozonation experiments, it was observed that the presence of sufficient amount of iron in groundwater samples improved the removal of BTEX, MTBE, TBA, and TPHg.  相似文献   

3.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.  相似文献   

4.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

5.
Water quality in five marinas on Lake Texoma, located on the Oklahoma and Texas border, was monitored between June 1999 and November 2000. Focus was to evaluate lake water associated with marinas for methyl tert-butyl ether (MTBE). Lake water was collected at locations identified as marina entrance, gasoline filling station, and boat dock. Occurrence of MTBE showed a direct seasonal trend with recreational boating activity at marina areas. There was a positive correlation with powerboat usage ratio, which was directly related to the gallons of gasoline sold. Sampling before and after the high boat use holiday weekends determined the apparent influence of powerboat activity on MTBE contamination. Boat dock locations were the most sensitive sites to MTBE contamination, possibly due to gasoline spillage during engine startup. The most common compound of the BTEX series found with MTBE was toluene and co-occurrence was most frequent at gasoline filling stations.  相似文献   

6.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

7.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

8.
Laboratory evidence of MTBE biodegradation in Borden aquifer material   总被引:16,自引:0,他引:16  
Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.  相似文献   

9.
The effect of chloride and sulfate ions on the oxidation of methyl tert-butyl ether (MTBE) and its degradation products in a Fenton-like system was studied. Although both chloride and sulfate ions inhibited the decomposition of H202, chlorides were found to be the more effective inhibitor of MTBE degradation. In the presence of sulfates, MTBE decomposition can be attributed to oxidation not only by hydroxyl radicals, but also likely by SO4*- species. In the presence of chloride ions, it is possible that the dichloride radical is formed, which is less reactive than OH*. In the system under investigation, t-butyl alcohol was found to be the major byproduct, followed by t-butyl formate and acetone. The degradation rates of all intermediates and their inhibition in the presence of inorganic ions are similar to those obtained for MTBE, although their distributions are related to the concentrations of inorganic salts added.  相似文献   

10.
Continuing modifications of fuels like gasoline should include evaluations of the proposed constituents for their potential to damage environmental resources such as subsurface water supplies. Consequently, we developed a screening model to estimate well water concentrations and transport times for gasoline components migrating from underground fuel tank (UFT) releases to typical at-risk community water supply wells. Representative fuel release volumes and hydrogeologic characteristics were used to parameterize the transport calculation. Subsurface degradation processes were neglected in the model in order to make risk-conservative assessments. The model was tailored to individual compounds based on their abundances in gasoline, gasoline-water partition coefficients (Kgw), and organic matter-water partition coefficients (Kom). Transport calculations were conducted for 20 polar and 4 nonpolar compounds found in gasoline, including methyl tert-butyl ether (MTBE) and other ether oxygenates, ethanol, methanol, and some aromatic hydrocarbons. With no calibration, the screening model successfully captured the reported magnitude of MTBE contamination of at-risk community supply wells. Such screening indicates that other oxygenates would cause similar widespread problems unless they were biodegradable. Stochastic analysis of field parameter variability concluded that community supply well contamination estimates had order-of-magnitude reliability. This indicated that such pre-manufacturing analyses may reasonably anticipate widespread environmental problems and/or inspire focused investigations into chemical properties (e.g., biodegradability) before industrial adoption of new fuel formulations.  相似文献   

11.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

12.
Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE)   总被引:1,自引:0,他引:1  
Background Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 μg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Methods Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Results and Discussion Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Conclusion Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. Recommendation and Outlook MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

13.
Xu XR  Li HB  Gu JD 《Chemosphere》2006,63(2):254-260
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process.  相似文献   

14.
《Environmental Forensics》2013,14(3):175-189
During the last decade, the fuel oxygenate methyl tertiary butyl ether (MTBE) has received widespread attention as a potential threat to water quality, primarily due to leaking underground gasoline storage tanks and watercraft with two-stroke engines. In this article, we examine the annual detection frequency, number of new source detections, and concentration of MTBE detected in California's public drinking water groundwater and surface water sources from 1995 to 2002. This work builds on our previous evaluations of California's water quality monitoring database. However, it is unique in that it includes separate evaluations for groundwater and surface water sources that are of greatest concern to regulators, and which are likely being used for current public consumption. Our evaluations also include full-year data for 2002 (which have not been published previously) and an analysis of how the sampling and reported detections of MTBE vary by geographic location. We find that MTBE was generally detected (at any level) in approximately 0.5-0.9% and 0.2-0.4% of all groundwater sources assuming a one-detection and two-detection criterion, respectively. The overall detection frequency for MTBE in surface water sources is significantly higher than for groundwater sources, although these surface water detections appear to have substantially declined since 1996 (e.g., 7-9% for all surface water sources during 1996 to 1999 and 4% for all surface water sources during 2000 to 2002, assuming a one-detection criterion). The detection frequency of MTBE concentrations at or above the state drinking water standards in all drinking water sources (both groundwater and surface water sources) and the subset of drinking water sources that are likely to currently be delivered to consumers is markedly lower (and often zero). Despite the significant increase in water sampling over time, the number of new drinking water sources found to contain MTBE in California has not increased at the same rate and appears to have remained relatively stable or to have decreased since 1998. The data also show that nearly all of the 58 counties in California have routinely sampled at least some of their groundwater and surface water sources for MTBE over the last 8 years. Geographical evaluations show that MTBE has been detected (at least once) in groundwater sources in 34 counties and in surface water sources in 18 counties but has only been detected routinely (i.e., for 3 or more years) in 16 and 7 counties, respectively. Detected concentrations of MTBE are also generally below state drinking water standards, particularly for surface water sources. In short: (1) MTBE is rarely found in California groundwater or surface water sources that are of greatest concern to regulators or the public, and (2) drinking water detections of MTBE are expected to decline in the future due to the pending phase-out of MTBE and recent regulatory programs aimed at controlling gasoline releases from underground storage tanks and two-stroke-engine watercraft.  相似文献   

15.
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation.  相似文献   

16.
MTBE的生物降解技术   总被引:4,自引:0,他引:4  
汽油添加剂甲基叔丁基醚 (MTBE)的污染在国外已引起重视。概述了目前MTBE生物降解的研究现状 ,着重介绍了国外对MTBE污染地下水的异位和原位生物处理方法。随着汽车的逐步普及和MTBE用量的增加 ,我国正在或将面临MTBE的污染。指出了开展相关研究的重要性和迫切性 ,初步提出了这一新课题的研究思路 ,为我国环境保护领域从事该项研究的人员提供参考。  相似文献   

17.
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.  相似文献   

18.
The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing conditions. For batch studies, culture from the reactor was transferred anaerobically to serum bottles containing either MTBE alone or MTBE with ethanol (EtOH) and excess electron acceptor. In the continuous-flow reactor, MTBE conversion to tert-butyl alcohol (TBA) was observed after 181 days of operation, and stable removal was achieved throughout the remainder of the study. Simultaneously, both the MTBE only and the MTBE and EtOH iron-reducing batch serum bottles also began to degrade MTBE. Bottles were respiked and the degradation rate was determined to be 2.36 +/- 0.10 x 10(-4) mmol MTBE/min-kgVSS. The EtOH present with MTBE degraded faster (7.76 +/- 0.08 x 10(-3) mmol EtOH/min-kg VSS) but did not have a noticeable effect on the rate of MTBE degradation. No evidence of TBA degradation was observed by the iron-reducing cultures. Stoichiometry of iron utilization was determined from the iron balance of the continuous-flow reactor, and it was found that the bulk of the electron acceptor was required for energy and maintenance with little remaining for cell synthesis. This is consistent with a yield coefficient of less than 0.1. Molecular analysis of the iron-reducing culture by denaturing gradient gel electrophoresis indicated that uncultured strains of delta-Proteobacteria were dominant in the reactor.  相似文献   

19.
甲基叔丁基醚的污染治理技术研究进展   总被引:5,自引:0,他引:5  
甲基叔丁基醚(MTBE)是一种无铅汽油添加剂,其广泛使用造成了土壤和地下水污染;同时对人类有可疑致癌作用,因此成为人们关注的焦点.对近年来国外MTBE的污染治理技术研究进展进行了综述,并对主要方法进行了对比.在适宜的微生物存在条件下,MTBE的生物降解是可以发生的;植物修复技术可用于地下水和土壤污染治理;物理化学方法种类繁多,包括吸附和高级氧化等,其处理效率高成本也较高;新的处理技术如渗透性活性障壁PRB、膜分离/催化技术等也在研究之中.  相似文献   

20.
Methyl tert-butyl ether (MTBE) in finished drinking water in Germany   总被引:2,自引:0,他引:2  
In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号