首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
催化湿式过氧化法处理蒽醌-2-磺酸钠废水   总被引:1,自引:0,他引:1  
以过渡金属Cu为主活性组分,通过加入第2活性组分Mn和稀土元素Ce,研制出适用于催化湿式过氧化法(CWPO)处理含高浓度蒽醌-2-磺酸钠有机废水的复合催化剂。考察了活性组分配比对催化剂的催化活性和稳定性的影响,并利用SEM和XRD表征手段,研究了掺杂Ce对催化剂表面微观结构的影响。结果表明,当Cu、Mn和Ce的质量比为-时,催化剂的催化性能最佳,在100 min内,废水COD的去除率能达到95.3%;掺杂Ce能有效提高活性组分在催化剂表面的分散程度从而改善催化剂的催化活性,并能有效抑制Cu的溶出。通过LC-MS分析该催化剂催化氧化蒽醌-2-磺酸钠降解过程中的代谢产物,推断出了催化氧化降解蒽醌-2-磺酸钠的途径。  相似文献   

2.
废水催化湿式氧化稀土金属氧化物催化剂的研制   总被引:1,自引:0,他引:1  
采用共沉淀法制得锰铈复合氧化物催化剂,催化湿式氧化处理高浓度苯酚废水。通过正交实验筛选催化剂制备条件,单因素实验优化制得催化剂。研究了CWAO处理废水条件下的金属离子溶出和催化剂的表征。结果表明,该催化剂在低温低压条件下具有优良的湿式氧化催化活性,且金属离子溶出量低,是一种CWAO处理高浓度有机废水中极具应用前景的新型高效催化剂。  相似文献   

3.
Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e. oxidation by molecular oxygen in the liquid phase, under high temperature (200-325 degrees C) and pressure (up to 150 bar). However, organic nitrogen can be relatively resistant to oxidation and can be harmful to the environment. In the course of treatment, organic nitrogen (N-Org) is converted into ammonia (NH(3)), while organic carbon (C-Org) is converted mainly into carbon dioxide (CO(2)). This can be done without catalysts. In the presence of Mn/Ce composite oxides, it is possible to transform ammonia into molecular nitrogen at a temperature close to 260 degrees C. The direct conversion of organic nitrogen into molecular nitrogen also can be achieved using the same catalyst. This paper discusses the results obtained during the treatment of nitrogenous compounds like aniline, nitrophenol, beta-alanine and ammonia. Laboratory investigations were conducted in a stirred batch reactor with Mn/Ce composite oxides as catalysts. Very limited amounts of nitrites and nitrates were observed with amines, but more significant quantities were found with nitro-compounds. The kinetics of oxidation of ammonia, organic compounds, and more particularly aniline, were investigated. The treatment of a real waste (process wastewater) was also investigated. The dependence of the transformation rate on various parameters (amount of catalyst, temperature, etc.) was established. The rates of oxidation are described by first-order kinetic laws with respect to the various nitrogen species (aniline, NH(3)). Several parallel pathways are considered for the transformation of organic nitrogen, amongst which is an interaction with the catalyst surface. The orders with respect to oxygen and catalyst are established.  相似文献   

4.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   

5.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).  相似文献   

6.
针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。  相似文献   

7.
为实现对柴油机碳烟和NOx的低温同步去除,采用柠檬酸络合法制备分子筛负载钙钛矿型金属复合氧化物催化剂,应用x衍射分析仪(XRD)和电镜扫描仪(SEM)对催化剂性能进行表征,并在微型固定床反应器中对催化剂低温去除碳烟和NOx进行活性评价。利用程序升温反应(TPR)技术,进行催化剂活性评价、柴油机负荷和排放等特性实验。结果表明,A位用适量Ce部分取代La,B位用适量cu部分取代Mn,可使碳颗粒燃烧温度降低,CO2选择性好,NOx转化率升高。La0.4 Ce0.6 Cu0.2 Mn0.8O3/HZSM-5催化剂的最大NOx转化率为81.0%,Ti、Tm和Tf分别为250、350和475℃,表明该催化剂具有较好的催化活性,能在低温条件下去除碳烟和NOx。  相似文献   

8.
Long XL  Xiao WD  Yuan WK 《Chemosphere》2005,59(6):811-817
An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.  相似文献   

9.
用共沉淀法制备用于脱除NO的六铝酸盐催化剂LaMxAl12-xO19(M =Cu,Ce,CuCe).用XRD、H2-TPR和BET对催化剂进行了结构和物性表征.用微型催化反应装置考察了催化剂在CO选择性催化还原NO中的活性.结果表明,Cu离子易于进入六铝酸盐晶格内,形成完整的六铝酸盐结构.Ce离子不易于进入六铝酸盐晶格内,主要以CeO2的形式存在.在CO+ NO条件下,3种催化剂都表现出较好的脱硝活性,LaCuCeAl10O19中由于Cu离子与Ce离子间产生协同作用,该催化剂的脱硝活性有所增加.加入SO2后,3种催化剂都有不同程度的失活现象发生,其中LaCuAl11O19催化剂受SO2中毒影响最严重,LaCuCeAl10O19催化剂的脱硝活性在三者中最好.  相似文献   

10.
Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2. The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over LaCoO3-based perovskite catalyst at 600 degrees C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.  相似文献   

11.
Chen IP  Lin SS  Wang CH  Chang SH 《Chemosphere》2007,66(1):172-178
The effect of promoter addition on activity of CeO(2)/gamma-Al(2)O(3) was assessed via the CWAO of phenol. Adding Cu as the promoter rendered the most effective performance, followed by Mn, although the performance of Mn-promoted catalyst was inferior to CeO(2)/gamma-Al(2)O(3). Mineralization of phenol was effectively implemented at 160 degrees C using Cu-promoted catalyst (Ce15Cu5). Furthermore, at 180 degrees C this catalyst produced about 100% conversion of phenol (1h) and 95% removal of chemical oxygen demand (4h), higher than that of CeO(2)/gamma-Al(2)O(3). In contrast, Mn-promoted catalyst (Ce15Mn5) required a temperature above 220 degrees C for acceptable performance. Activity of re-used catalyst declined noticeably, due to deposits of carbonaceous compounds and leaching of metal ions. Regeneration with acetone rinsing after the first run was effective in recovering activity of Ce15Cu5, although after a second run further regeneration with acetone rinsing had only a moderate effect, due to residual carbonaceous deposits and the additive effect of leached metal species in each run. As an alternative to acetone, HCl or HNO(3) solution (0.01 M) was less effective at regenerating activity. In promoted catalysts, leached metal ions accounted for the majority of mineralization of phenol, while the solid catalyst played a dual role of initiator and terminator of free radicals. Despite a superior catalytic performance, leaching of Cu(2+) from the promoted catalyst caused a severe decline in activity and poses the problem of secondary pollution of treated wastewater. Therefore, addition of Cu, as well as other metal species, is unfavorable in promoting the CeO(2)/gamma-Al(2)O(3) catalyst.  相似文献   

12.
非均相催化湿式氧化亚甲蓝水溶液的研究   总被引:1,自引:1,他引:1  
COD为2000 mg/L的亚甲蓝水溶液作为研究对象,用非均相催化湿式氧化技术进行处理,催化剂性能以COD去除率、脱色率以及稳定性来评价.对4种催化剂担体、15种可溶盐活性组分、4种优选铜催化剂的浸渍液浓度进行筛选,并对铜催化剂进行了改性.实验表明,最佳催化剂担体是FSC,活性组分是Cu(NO3)2,并按催化性能对活性组分进行了排序;浸渍液浓度6wt%Cu2 是最佳选择;改性的Cu-Ce/FSC催化剂与Cu/FSC催化剂相比,COD去除率分别为83.9%和84.5%,出水Cu溶出浓度分别为24.1 mg/L和36.1 mg/L,可见改性催化剂与原催化剂的活性相当,但是稳定性却有了大幅度的提高.  相似文献   

13.
采用共沉淀法,以Al2O3为载体制备Mn/γ-Al2O3和Mn—Ce/Mn/γ-Al2O3催化剂,并分别在N2气氛和O2气氛下焙烧。采用固定床连续流动反应器,研究所制备催化剂在室温条件下催化臭氧氧化甲苯的性能。通过XRD、XPS和FTIR等手段对催化剂的结构和组成进行表征。结果表明,Mn/Mn/γ-Al2O3催化剂具有良好的催化臭氧氧化甲苯和催化臭氧自身分解的性能,共沉淀法制备催化剂的最佳Mn负载量为20%。O2气氛焙烧和Ce的加入,可以有效提高催化剂的活性和寿命。原因是O2气氛焙烧和Ce的加入可以提高Mn的氧化价态。催化剂失活的主要原因是有机副产物在催化剂表面吸附堆积,失活催化剂在550℃、空气气氛下焙烧可恢复催化性能。  相似文献   

14.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

15.
This study addresses the oxidation of ammonia (NH3) at temperatures between 423 and 673 K by selective catalytic oxidation (SCO) over a copper-based, rare earth composite metal material that was prepared by coprecipitating copper nitrate, lanthanum nitrate, and cerium nitrate at various molar ratios. The catalysts were characterized using Brunner, Emmett, and Teller spectroscopy, Fourier-transform infrared spectroscopy, Xray diffraction, ultraviolet-visible spectroscopy, cyclic voltammetric spectroscopy, and scanning electron microscopy. At a temperature of 673 K and an oxygen content of 4%, approximately 99.5% of the NH3 was reduced by catalytic oxidation over the 6:1:3 copper-lanthanum-cerium (molar ratio) catalyst. Nitrogen (N2) was the main product of this NH3-SCO process. Results from the activity and selectivity tests revealed that the optimal catalyst for catalytic performance had the highest possible cerium content and specific surface area (43 m2/g).  相似文献   

16.
The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity?=?0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3–4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.  相似文献   

17.
Catalytic activity of V, Mn, Ni, Cu, Zn, Mo, Zr and Ce oxides over an -alumina support was evaluated for cyclohexane oxidation under oxygen deficient conditions in order to understand the relation between carbon deposition and catalytic activity/selectivity. Carbon formation over the catalysts during the oxidation reaction was measured by means of Fourier transformed infrared spectroscopy (FTIR). Catalysts Mn/Al2O3 and Ce/Al2O3, which are selective for deep oxidation of cyclohexane, possessed relatively carbon free surfaces. The catalysts with relatively high carbon deposition (V, Ni, Cu, Zn, Mo and Zr) produced CO in addition to CO2. Traces of formaldehyde were produced over the catalysts Mo and V.  相似文献   

18.
Lee JY  Kim SB  Hong SC 《Chemosphere》2003,50(8):1115-1122
Natural manganese ore (NMO) catalysts were characterized and tested in the selective catalytic oxidation of ammonia to nitrogen oxides under dilute conditions. Also, the oxidation of ammonia (NH(3)) was carried out using pure MnO(2), Mn(2)O(3) for comparing with the activity. It is found that the activity of NMO was similar to that of MnO(2) at low temperature below 150 degrees C but above this temperature, the activity of these catalysts showed the difference. In the course of NH(3) oxidation, N(2), NO, N(2)O and H(2)O were produced. But the quantity of NO(2) produced in this experiment was negligible. At temperature below 250 degrees C, selectivity into N(2) from NH(3) oxidation was in the order, NMO > MnO(2) > Mn(2)O(3). This is the reverse of activity of these manganese oxides. Also the characterization of NH(3) oxidation was proposed and supported by the effect of space velocity, inlet O(2) and NH(3) concentration. The increase of space velocity remarkably influenced not only the conversion but also selectivity into N(2). The higher the reaction temperature was, the higher the effect of inlet O(2) and NH(3) concentration on the reaction rate was. By introducing NO during NH(3) oxidation reaction, the possibility of NMO as selective catalytic reduction catalyst at low temperature was studied and showed positive results.  相似文献   

19.
高浓度焦化废水湿式氧化铜系催化剂的研制   总被引:1,自引:0,他引:1  
通过共沉淀法制备了铜系催化剂 ,用于催化湿式氧化处理高浓度焦化废水。结果表明 ,铜氧化物催化剂的催化活性明显优于其他过渡金属氧化物 ;优化催化剂的设计和制备方法 ,可有效地改善Cu2 +的溶出问题 ,使该类催化剂具有广阔的应用前景  相似文献   

20.
采用水热晶化法合成了不同含铜量的Cu—SBA-15介孔分子筛,并且用XRD、N2吸附、TEM以及uV—vis对所合成的样品进行表征。以Cu—SBA-15为催化剂,H2O2为氧化剂,催化湿式过氧化水溶液中的罗丹明B,主要考察H2O2浓度、催化剂用量、处理温度、初始pH等因素对罗丹明B氧化效果的影响。结果表明,在同样的处理条件下罗丹明的脱色率明显高于TOC去除率,处理温度、初始pH对罗丹明B的脱色与氧化有重要影响。在罗丹明B初始浓度100mg/L,H2O2初始浓度1.8g/L,催化剂量0.3g/L,温度60℃,pH为7.0,处理时间100min时,罗丹明B的脱色率为98.6%,TOC去除率为62.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号