首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
于2014年7月8日至8月13日在成都市城区和工业区选取两个点位开展挥发性有机物(VOCs)样品采集工作,分析结果显示,成都市夏季城区大气中VOCs质量浓度在34.1~458.8μg/m3,平均值为(137.3±91.8)μg/m3;工业区大气中VOCs质量浓度在26.7~474.9μg/m3,平均值为(135.9±103.5)μg/m3。早高峰时段(7:00~10:00)两个点位VOCs的浓度水平均高于其他时段,说明VOCs浓度受机动车排放的影响较为明显。用·OH消耗速率和臭氧生成潜势评估VOCs大气化学反应活性,结果显示,芳香烃和烯烃是影响大气化学反应活性的关键组分。城区和工业区的二次有机气溶胶(SOA)的生成潜势分别为4.859、4.559μg/m3,芳香烃不仅是臭氧生成潜势的关键活性组分,同时也是SOA的重要前体物。  相似文献   

2.
家具涂料的挥发性有机物排放特征及致癌风险估算   总被引:1,自引:0,他引:1  
采用顶空实验装置采集家具涂料挥发蒸汽,通过不锈钢采样罐-气相色谱(GC)/质谱(MS)分析系统测量了溶剂型和水型涂料的挥发性有机物(VOCs)排放特征。结果表明,溶剂型涂料排放的总VOCs平均质量浓度为7.6mg/m3,远高于水型涂料的2.6mg/m3。溶剂型和水型涂料排放的VOCs主要以芳香烃和烷烃为主。溶剂型涂料和水型涂料排放的特征VOCs组分为甲苯、2-甲基戊烷、苯、正辛烷,分别占两种涂料总VOCs排放的41.8%(质量分数,下同)和31.2%、21.2%和9.6%、6.5%和5.6%、6.0%和4.8%。溶剂型涂料排放VOCs的臭氧生成潜势(OFP)和二次气溶胶生成潜势(SOAP)明显高于水型涂料,OFP和SOAP的主要贡献组分均为芳香烃物质。溶剂型涂料排放的苯的长期致癌风险是水型涂料的2.6~4.6倍,均远远高于可接受的暴露风险值1×10-6。  相似文献   

3.
选取某湿法熄焦焦化厂,通过苏玛罐采样、气质联用(GC/MS)分析,研究了各工段挥发性有机物(VOCs)的排放特征,并对臭氧生成潜势(OFP)进行了计算.结果表明:炼焦工艺过程中脱硫入口、装煤排放口、焦炉烟囱、袋式除尘出口、焦炉顶5个采样点共检测出59种VOCs,总挥发性有机物(TVOCs)分别为7228.5、2634....  相似文献   

4.
为了解上海城郊大气中挥发性有机物(VOCs)的时空污染特征及其对人体潜在健康风险,选取上海某城郊10个点位进行连续6年(2012—2017年)的采样分析。结果表明,上海该城郊大气VOCs平均质量浓度为(243.80±151.52)μg/m3,其中烷烃、卤代烃、芳香烃、含氧VOCs和不饱和脂肪烃依次占VOCs总浓度的45.72%、20.04%、18.84%、11.19%、4.21%。上海郊区不同功能区VOCs总浓度年际变化趋势较为一致,总体呈下降趋势;在空间上,化工区主干道路附近的两采样点VOCs质量浓度最高,分别为307.81、340.97μg/m~3。O3生成潜势和等效丙烯浓度计算结果显示,芳香烃为上海城郊大气中最主要的活性物种,且关键活性组分为甲苯、间/对-二甲苯和异丁烷等。上海城郊大气中27种风险VOCs的总致癌风险值为3.02×10~(-4),高于可接受限值(1.00×10~(-4)),长期暴露可能有致癌风险。  相似文献   

5.
为深入了解中山市挥发性有机物(VOCs)来源及对臭氧的影响,基于2021年1—12月VOCs在线监测数据,对大气VOCs体积分数、组分特征、臭氧生成潜势(OFP)和来源情况进行了研究。结果表明:中山市大气VOCs体积分数日均值为2.61×10-9~1.14×10-7,年均值为2.18×10-8,其中,烷烃是占比最大的组分,占60.0%,其次是芳香烃和烯烃,分别占25.9%和9.3%。除乙烯外,臭氧污染日前十物种体积分数较非污染日上升6%~49%。中山市OFP平均值为228.43μg/m3,其中,芳香烃和烯烃是贡献率较高的组分,间/对二甲苯、甲苯、邻二甲苯和异戊二烯等是关键活性物种。VOCs主要来源有机动车排放源、油气挥发源、工业源、燃烧源、溶剂使用源、天然源。溶剂使用源和工业源是OFP贡献率最高的污染源,贡献率分别为25.5%和24.0%,燃烧源、油气挥发源、天然源和机动车排放源贡献率分别为14.1%、13.3%、11.6%和11.5%。  相似文献   

6.
为研究河北大气中挥发性有机物(VOCs)对臭氧(O3)及二次有机气溶胶(SOA)生成的影响,利用2021年4—10月河北11个地市VOCs的监测数据,对河北VOCs污染特征及其关键活性组分进行分析研究。结果表明,观测期间河北VOCs平均体积分数为36.16×10-9,低碳的醛酮类和低碳的烷烃是河北VOCs的主要构成物种。VOCs高值区主要集中在河北中南部沧州、衡水、邯郸、石家庄等地,北部城市秦皇岛、张家口VOCs浓度较低。监测期间,河北O3生成潜势(OFP)为259.67μg/m3,SOA生成潜势为0.61μg/m3,其中衡水OFP最高,达302.96μg/m3,石家庄SOA生成潜势最高,达0.92μg/m3。甲苯、间/对二甲苯和邻二甲苯对OFP及SOA生成潜势的贡献均较大,是O3和大气颗粒物协同控制的优控VOCs物种。  相似文献   

7.
近年来成都市臭氧(O3)污染频发,O3污染问题日益突出。采用零维大气盒子(F0AM)模型结合经验动力学模拟方法(EKMA)和相对增量反应活性(RIR)法对成都市2019年8月典型污染时段O3生成进行模拟,并研究成都市O3生成敏感性,由此进一步分析O3污染控制策略。结果表明,模拟日内O3光化学反应过程中,芳香烃减少的比例最大(81.36%),其次为烯烃和炔烃,3者对于O3光化学反应过程有重要作用;EKMA曲线显示成都市城区O3生成处于挥发性有机物(VOCs)控制区;RIR结果显示,人为源VOCs(AVOCs)对成都市城区O3生成最为敏感,其次是植物源VOCs(BVOCs)和CO,而氮氧化物(NOx)为负敏感性,在AVOCs中,芳香烃和烯烃对成都市城区O3生成最为敏感,应加强芳香烃和烯烃相关排放源的管控;以O3日最大小时浓度达到《...  相似文献   

8.
基于WRF-CMAQ模型,结合长三角地区大气污染源排放清单,设计9组预测情景,模拟分析上海市2012年7月臭氧生成与臭氧前体物(NOX、挥发性有机物(VOCs))排放之间的变化关系。结果表明:(1)上海城区臭氧生成属VOCs控制型,控制VOCs的排放可降低臭氧浓度。(2)减少臭氧前体物排放对日间高浓度臭氧有较好的控制效果,夜间则相反。(3)徐汇、静安站点控制VOCs排放对降低臭氧浓度效果较显著,当VOCs削减比例为75%时,两个站点的臭氧浓度超标小时数分别下降了45.5%以上、50.0%以上。青浦淀山湖及浦东川沙站点控制NOX排放对降低臭氧浓度效果较好,当NOX削减比例为75%时,两个站点的臭氧1h浓度超标小时数分别降低75.0%、100.0%。(4)在最大控制力度(即NOX和VOCs均削减75%)下,徐汇、静安、青浦淀山湖、浦东川沙站点的臭氧1h浓度超标小时数也从基准情景的11、8、16、6h下降至0、3、4、0h。  相似文献   

9.
对济南市2010年6月—2012年5月环境空气中55种VOCs监测数据进行分析,研究其反应活性及关键活性组分。结果表明,济南市环境空气VOCs的LOH和OFP的月变化规律与其月浓度变化趋势一致,夏季环境空气VOCs的浓度、LOH和OFP较大,是容易发生复合型大气污染的时段;济南市环境空气VOCs化学活性与其混合比之间具有良好的线性相关性,表明济南市环境空气中VOCs的化学组成具有一定的稳定性;VOCs的平均KOH远远超过乙烯的KOH,MIR与乙烯相当,说明济南市环境空气VOCs的化学反应活性较强;烯烃体积分数远远小于烷烃,但化学反应活性贡献率最高,且顺-二丁烯、丙烯、乙烯、丁烯、反-二丁烯、异戊二烯、苯乙烯、2-甲基-1-戊烯、顺-二戊烯、间,对-二甲苯、邻-二甲苯、甲苯、1,2,4-三甲基苯和环戊烷为济南市关键活性组分,因此,济南市高活性VOCs物种为烯烃,同时芳香烃和环戊烷对环境空气活性的贡献也不容忽视。  相似文献   

10.
对天津市滨海新区夏季挥发性有机物(VOCs)进行在线观测,分析其夏季污染特征。结果表明:83种检出VOCs平均质量浓度为288.14μg/m3,各类化合物浓度贡献排序为烷烃(39.8%)卤代链烃(26.5%)芳香烃(13.9%)烯烃(13.1%)炔烃(4.4%)卤代芳香烃(2.3%),各组分中浓度最高的为正丁烷和正戊烷,占VOCs比例高达8.1%和7.0%;苯和甲苯也有相当含量,平均质量浓度均超过7μg/m3,分别占VOCs的2.5%和2.4%。天津市滨海新区VOCs日变化呈单谷型,与交通早晚高峰关系不大,苯/甲苯(体积比)为1.32,说明化石工业排放等对天津市滨海新区大气中VOCs影响较机动车尾气显著。聚类分析发现,天津市滨海新区VOCs来源分为3类,一类是汽油挥发和液化石油气、天然气泄漏,一类是化石工业和其他工业生产过程排放,一类是机动车尾气及植物排放,其中前两类为主要来源。  相似文献   

11.
污水处理厂的挥发性有机物排放特征及健康风险评价   总被引:1,自引:0,他引:1  
挥发性有机物(VOCs)种类繁多、来源广泛,污水处理厂是其中不容忽视的排放源之一。研究了某污水处理厂的VOCs组成特征、工艺特征和时间特征,并对美国环境保护署(USEPA)的综合风险信息系统中有相应毒理学数据的化合物进行了健康风险评价。结果表明,共检出了烷烃、烯烃、卤代烃、芳香烃以及含氧VOCs 5类54种化合物。筛选出10种特征化合物为乙醇、环己烷、丙酮、乙酸乙酯、二氯甲烷、苯、甲苯、丙烯、1,4-二氧己环和正己烷。污水处理厂各处理单元中检出的VOCs总浓度由高到低依次为初沉池B、缺氧池、初沉池A、厌氧池、好氧池和储泥池。在采样的4个时间段中,5类VOCs的变化趋势一致,中午(11:00—12:00)时浓度最高,下午(14:00—15:00)时最低。参与评价的9种化合物致癌危害指数均小于1.00×10~(-6),25种化合物非致癌危害指数均小于1,致癌风险和非致癌风险均在USEPA的可接受范围内。  相似文献   

12.
研究了2019年夏季(8月)绍兴城区的烷烃、烯烃、炔烃、芳烃、卤代烃、含氧挥发性有机物(VOCs)、腈7类共98种VOCs的特征、来源及大气反应活性。结果表明,7类VOCs的平均质量浓度由大到小依次为烷烃(24.29μg/m3)卤代烃(17.17μg/m3)芳烃(15.89μg/m3)含氧VOCs(14.72μg/m3)烯烃(4.06μg/m3)炔烃(1.23μg/m3)腈(0.27μg/m3)。烃、腈和卤代烃白天浓度低,夜间浓度高,含氧VOCs基本上终日保持稳定。白天交通排放的贡献较为显著;夜间除交通排放外,挥发性有机溶剂的使用对绍兴城区夏季VOCs也有重要影响。此外,VOCs在一定程度上受到了长距离气团传输的影响,也存在一定的老化现象。烯烃、芳烃是绍兴城区夏季最具大气反应活性的VOCs。  相似文献   

13.
为深入了解天津市大气挥发性有机物(VOCs)来源及对O3的影响,基于2020年天津市VOCs在线监测数据,统计分析了VOCs污染特征,用主成分分析法对天津市VOCs的来源进行解析,用最大增量反应活性法分析VOCs的O3生成潜势(OFP).结果表明:2020年天津市VOCs的年均质量浓度总和为56.56μg/m3,其中,...  相似文献   

14.
低温等离子体法去除苯和甲苯废气性能研究   总被引:2,自引:0,他引:2  
对低温等离子体法去除苯和甲苯废气的性能进行了探讨,在理论分析的基础上进行实验研究。低温等离子体法去除苯和甲苯的机理是放电反应产生的高能电子与苯和甲苯分子发生非弹性碰撞并将能量全部或部分传递给目标分子,使其裂解、激化。被裂解、激化的分子与臭氧、活性基团发生一系列物理、化学反应后生成二氧化碳、一氧化碳和水。实验结果表明,苯和甲苯的去除率随着电场强度的增强而增大,随着气体流速的增大而减小。在较高电场强度下,有钛酸钡填料的反应器比无填料的反应器对苯和甲苯的去除率高得多,苯最高去除率可达92 6%,甲苯可达到96 8%。相同条件下甲苯比苯更容易去除。  相似文献   

15.
采用大气挥发性有机物(VOCs)在线监测系统对成都市冬季重污染过程的VOCs进行了连续在线观测,用正交矩阵因子分解(PMF)模型开展了VOCs源解析工作,并对重污染成因进行了分析。结果表明:观测期间成都市总VOCs(TVOCs)体积分数为21.83×10~(-9)~183.59×10~(-9),平均值为54.17×10~(-9),TVOCs中烷烃浓度最高,其次为炔烃、烯烃、芳香烃和卤代烃;成都市主要VOCs污染源为机动车排放源、液化石油气燃烧排放源、工业源、生物质燃烧源和溶剂使用源,贡献率分别为34.15%、21.57%、19.08%、15.19%、10.02%;边界层压缩和静风条件可能是导致VOCs和PM2.5浓度增加的主要原因。  相似文献   

16.
餐厨垃圾处理厂挥发性有机物释放特征   总被引:1,自引:0,他引:1  
选择目前国内成功运营的餐厨垃圾处理厂为采样点,该厂以利用餐厨垃圾生产生物蛋白饲料和厌氧发酵为主要工艺,采用气相色谱/质谱联用(GC/MS)技术对挥发性有机物(VOCs)浓度较高的工段,如破碎室、湿热反应器、好氧发酵仓进行了定性和定量分析.结果表明,3个采样点共检测出65种物质,包括醇、醛、酮、酯、芳香烃、硫化物、卤代物、烯烃和烷烃9类.湿热反应器排放VOCs浓度最高且包含物质种类最多,其中酮、酯、芳香烃、硫化物、卤代物、烯烃及烷烃类物质浓度均高于其他检测点,需对该工段进行重点监测和控制.  相似文献   

17.
对低温等离子体法去除苯和甲苯废气的性能进行了探讨,在理论分析的基础上进行实验研究。低温等离子体法去除苯和甲苯的机理是放电反应产生的高能电子与苯和甲苯分子发生非弹性碰撞并将能量全部或部分传递给目标分子,使其裂解、激化。被裂解、激化的分子与臭氧、活性基团发生一系列物理、化学反应后生成二氧化碳、一氧化碳和水。实验结果表明,苯和甲苯的去除率随着电场强度的增强而增大,随着气体流速的增大而减小。在较高电场强度下,有钛酸钡填料的反应器比无填料的反应器对苯和甲苯的去除率高得多,苯最高去除率可达92.6%,甲苯可达到96.8%。相同条件下甲苯比苯更容易去除。  相似文献   

18.
于2020年秋季对台州不同功能区大气中挥发性有机物(VOCs)进行在线监测,分析了VOCs浓度水平和组成特征;利用O3生成潜势(OFP)评估了VOCs对O3污染的影响;运用正定矩阵因子分解模型(PMF)解析VOCs的主要来源。结果表明,台州5个监测站点总挥发性有机物(TVOC)体积分数日均值在30.0×10-9~52.9×10-9,均以烷烃和含氧挥发性有机物(OVOCs)为主;VOCs来源主要包括机动车尾气源、工业排放源、燃烧源、油品挥发源、溶剂使用源和植物源,其对VOCs的贡献率分别为27.42%、19.37%、17.36%、17.25%、11.18%、7.41%,其中城区和郊区机动车尾气源的贡献最大,而工业园区则是工业排放源贡献最大;对OFP贡献最大的源类是溶剂使用源(贡献率31.12%),其次是工业排放源、机动车尾气源、油品挥发源、燃烧源,贡献率分别为20.69%、16.37%、15.70%、10.99%,植物源对OFP贡献率最低,仅为5.13%。台州城区和郊区需重点关注溶剂使用源管控,工业园...  相似文献   

19.
2012年6—10月,在我国北方某焦化厂厂界附近开展了O3、NO x、CO体积分数在线监测及VOCs样品采集分析工作,获得了夏、秋两季焦化厂厂界O3及其前体物的体积分数及其日变化趋势。焦化厂厂界附近O3、NO、CO体积分数均呈单峰型日变化,O3体积分数的季节差异不明显,夏季仅略高于秋季,而NO、CO体积分数秋季高于夏季,作为二次反应产物的NO2,其变化幅度秋季比夏季强烈。夏季TVOCs在各监测时段的小时体积分数呈现先上升后下降的日变化趋势,而秋季则呈现逐渐下降的日变化趋势。由较小VOCs/NO x的比值可初步判断,该焦化厂所在区域的大气光化学臭氧生成潜势处于VOCs控制区。在焦化厂下风向厂界附近,夏、秋两季TVOCs平均体积分数分别为(43.8±45.0)×10-9和(26.7±29.6)×10-9,苯系物、烷烃、烯烃的平均体积分数分别为(34.3±28.1)×10-9和(14.4±14.8)×10-9、(5.3±11.8)×10-9和(7.0±7.7)×10-9、(4.3±5.0)×10-9和(5.3±7.1)×10-9。夏、秋两季焦化厂附近臭氧生成潜势贡献最大的是苯系物(47.6%~65.8%),其次是烯烃(28.0%~41.9%),再次是烷烃(6.3%~10.5%)。  相似文献   

20.
对胶合板工厂各制造工序的有机挥发物(VOCs)的排放量进行调查,对排出的VOCs成分及排放模式进行研究。在胶合板制造各工序中,VOCs的排放量由大到小依次为热压、单板干燥、胶黏剂涂抹和冷压。对单板干燥过程中所排放的有害气体进行水洗处理,能够减少甲醛和乙醛的排放。在排放出来的羰基化合物中,乙醛在单板干燥过程中所占比例最大,而甲醛在热压过程中所占比例最大。对排放的有害气体进行连续的VOCs浓度测定,发现胶黏剂涂抹和热压过程中的VOCs浓度变化不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号