首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为深入了解中山市挥发性有机物(VOCs)来源及对臭氧的影响,基于2021年1—12月VOCs在线监测数据,对大气VOCs体积分数、组分特征、臭氧生成潜势(OFP)和来源情况进行了研究。结果表明:中山市大气VOCs体积分数日均值为2.61×10-9~1.14×10-7,年均值为2.18×10-8,其中,烷烃是占比最大的组分,占60.0%,其次是芳香烃和烯烃,分别占25.9%和9.3%。除乙烯外,臭氧污染日前十物种体积分数较非污染日上升6%~49%。中山市OFP平均值为228.43μg/m3,其中,芳香烃和烯烃是贡献率较高的组分,间/对二甲苯、甲苯、邻二甲苯和异戊二烯等是关键活性物种。VOCs主要来源有机动车排放源、油气挥发源、工业源、燃烧源、溶剂使用源、天然源。溶剂使用源和工业源是OFP贡献率最高的污染源,贡献率分别为25.5%和24.0%,燃烧源、油气挥发源、天然源和机动车排放源贡献率分别为14.1%、13.3%、11.6%和11.5%。  相似文献   

2.
为研究河北大气中挥发性有机物(VOCs)对臭氧(O3)及二次有机气溶胶(SOA)生成的影响,利用2021年4—10月河北11个地市VOCs的监测数据,对河北VOCs污染特征及其关键活性组分进行分析研究。结果表明,观测期间河北VOCs平均体积分数为36.16×10-9,低碳的醛酮类和低碳的烷烃是河北VOCs的主要构成物种。VOCs高值区主要集中在河北中南部沧州、衡水、邯郸、石家庄等地,北部城市秦皇岛、张家口VOCs浓度较低。监测期间,河北O3生成潜势(OFP)为259.67μg/m3,SOA生成潜势为0.61μg/m3,其中衡水OFP最高,达302.96μg/m3,石家庄SOA生成潜势最高,达0.92μg/m3。甲苯、间/对二甲苯和邻二甲苯对OFP及SOA生成潜势的贡献均较大,是O3和大气颗粒物协同控制的优控VOCs物种。  相似文献   

3.
采用大气挥发性有机物(VOCs)在线监测系统对成都市冬季重污染过程的VOCs进行了连续在线观测,用正交矩阵因子分解(PMF)模型开展了VOCs源解析工作,并对重污染成因进行了分析。结果表明:观测期间成都市总VOCs(TVOCs)体积分数为21.83×10~(-9)~183.59×10~(-9),平均值为54.17×10~(-9),TVOCs中烷烃浓度最高,其次为炔烃、烯烃、芳香烃和卤代烃;成都市主要VOCs污染源为机动车排放源、液化石油气燃烧排放源、工业源、生物质燃烧源和溶剂使用源,贡献率分别为34.15%、21.57%、19.08%、15.19%、10.02%;边界层压缩和静风条件可能是导致VOCs和PM2.5浓度增加的主要原因。  相似文献   

4.
分析了机动车尾气挥发性有机物(VOCs)的排放特征,发现尾气VOCs排放具有明显的日变化和季节变化特征。不同区域不同车型机动车尾气VOCs成分谱略有差异,轻型汽油车尾气VOCs中芳香烃和烷烃含量较高,柴油车烷烃含量较高。尾气排放受机动车保有量、行驶里程、维护保养水平、行驶速度和燃油标准、排放标准等因素影响。从优先控制汽油车、加快机动车更新、采取本地化减排措施、加强多元管理措施、提高科研水平等方面提出了针对性的减排措施。  相似文献   

5.
近年来成都市臭氧(O3)污染频发,O3污染问题日益突出。采用零维大气盒子(F0AM)模型结合经验动力学模拟方法(EKMA)和相对增量反应活性(RIR)法对成都市2019年8月典型污染时段O3生成进行模拟,并研究成都市O3生成敏感性,由此进一步分析O3污染控制策略。结果表明,模拟日内O3光化学反应过程中,芳香烃减少的比例最大(81.36%),其次为烯烃和炔烃,3者对于O3光化学反应过程有重要作用;EKMA曲线显示成都市城区O3生成处于挥发性有机物(VOCs)控制区;RIR结果显示,人为源VOCs(AVOCs)对成都市城区O3生成最为敏感,其次是植物源VOCs(BVOCs)和CO,而氮氧化物(NOx)为负敏感性,在AVOCs中,芳香烃和烯烃对成都市城区O3生成最为敏感,应加强芳香烃和烯烃相关排放源的管控;以O3日最大小时浓度达到《...  相似文献   

6.
对天津市滨海新区夏季挥发性有机物(VOCs)进行在线观测,分析其夏季污染特征。结果表明:83种检出VOCs平均质量浓度为288.14μg/m3,各类化合物浓度贡献排序为烷烃(39.8%)卤代链烃(26.5%)芳香烃(13.9%)烯烃(13.1%)炔烃(4.4%)卤代芳香烃(2.3%),各组分中浓度最高的为正丁烷和正戊烷,占VOCs比例高达8.1%和7.0%;苯和甲苯也有相当含量,平均质量浓度均超过7μg/m3,分别占VOCs的2.5%和2.4%。天津市滨海新区VOCs日变化呈单谷型,与交通早晚高峰关系不大,苯/甲苯(体积比)为1.32,说明化石工业排放等对天津市滨海新区大气中VOCs影响较机动车尾气显著。聚类分析发现,天津市滨海新区VOCs来源分为3类,一类是汽油挥发和液化石油气、天然气泄漏,一类是化石工业和其他工业生产过程排放,一类是机动车尾气及植物排放,其中前两类为主要来源。  相似文献   

7.
上海市机动车尾气VOCs组成及其化学反应活性   总被引:9,自引:0,他引:9  
采用钢罐采样-气相色谱/质谱法,采集并分析了上海市主要交通干道和隧道废气样品中挥发性有机物(VOCs)的污染水平。分析结果表明,交通干道和隧道废气样品的总挥发性有机污染物(TVOC)质量浓度分别为(227.1±40.9)、(2209.9±1228.0)μg/m3;隧道废气样品中的TVOC浓度是交通干道平均浓度的4.3~15.2倍;交通干道废气样品中VOCs主要组分与隧道废气样品中VOCs主要组分非常类似,说明交通干道废气样品中VOCs主要来源于机动车尾气排放。交通干道废气样品中TVOC的.OH消耗速率为(17.21±4.49)s-1,延安东路隧道和打浦路隧道废气样品中TVOC的.OH消耗速率分别为(300.37±120.78)、(138.09±25.30)s-1,烯烃对TVOC的.OH消耗速率贡献最大,其对废气化学反应活性贡献率在70%以上。交通干道和隧道废气样品中关键活性组分是C2~C5的烯烃组分,这些组分也是机动车尾气中的特征污染物,因此可以判断机动车尾气是上海市大气化学反应活性的最大贡献者。  相似文献   

8.
广州市工业挥发性有机物排放特征研究   总被引:1,自引:0,他引:1  
伴随着工业经济的高速发展,广州市大气环境面临的压力日益增大,尤其是挥发性有机物( VOCs),可经过复杂的大气化学反应,引起一系列严重的空气质量问题.以源头追溯的方法,将该区域工业相关的33个VOCs排放源按照物质流动过程分为4个环节,分析了其排放特征.结果表明,2008年VOCs排放总量为182 362.7 t,各环节的贡献率分别为:VOCs的生产环节34.5%、储存和运输环节18.4%、以VOCs为原料的工艺环节9.9%、VOCs产品的使用和排放环节37.2%;污染主要来自石油炼制与石油化工、油品储运、交通运输设备制造与维修等,前12大污染源的VOCs排放量共占2008年排放总量的87.3%.2006-2008年的VOCs排放总量均超过15万t,且呈逐年增长的趋势.该研究可为“十二五”期间珠三角VOCs污染物联防联治工作提供借鉴.  相似文献   

9.
挥发性有机物(VOCs)是石化行业的特征污染物,油品装车栈桥的VOCs无组织挥发是石化企业重要的VOCs排放源,因此对大型石化企业油品装车栈桥区域的VOCs进行治理减排具有十分重要的意义。以西北某石化公司油品装车栈桥VOCs无组织挥发治理项目为例,通过源强核算、削减方案确定,利用AERMOD模式对栈桥区域环境空气质量改善情况进行预测分析,进而对VOCs治理方案的环境收益进行讨论,以期为同类油品装车栈桥改造项目提供借鉴与参考。  相似文献   

10.
家具涂料的挥发性有机物排放特征及致癌风险估算   总被引:1,自引:0,他引:1  
采用顶空实验装置采集家具涂料挥发蒸汽,通过不锈钢采样罐-气相色谱(GC)/质谱(MS)分析系统测量了溶剂型和水型涂料的挥发性有机物(VOCs)排放特征。结果表明,溶剂型涂料排放的总VOCs平均质量浓度为7.6mg/m3,远高于水型涂料的2.6mg/m3。溶剂型和水型涂料排放的VOCs主要以芳香烃和烷烃为主。溶剂型涂料和水型涂料排放的特征VOCs组分为甲苯、2-甲基戊烷、苯、正辛烷,分别占两种涂料总VOCs排放的41.8%(质量分数,下同)和31.2%、21.2%和9.6%、6.5%和5.6%、6.0%和4.8%。溶剂型涂料排放VOCs的臭氧生成潜势(OFP)和二次气溶胶生成潜势(SOAP)明显高于水型涂料,OFP和SOAP的主要贡献组分均为芳香烃物质。溶剂型涂料排放的苯的长期致癌风险是水型涂料的2.6~4.6倍,均远远高于可接受的暴露风险值1×10-6。  相似文献   

11.
基于典型工业企业自主申报数据,采用排放因子法,建立了天津市工业源VOCs排放清单。经计算,天津市2014年工业源VOCs排放量为16.52万t,其中VOCs生产环节、储运和运输环节、以VOCs为原料的工艺过程、含VOCs产品的使用和排放环节以及其他环节的VOCs排放量分别为12.94万、0.07万、0.63万、1.80万、1.08万t,对天津市工业源VOCs排放总量的贡献率分别为78.33%、0.42%、3.81%、10.90%、6.54%。滨海新区工业源VOCs排放量最大,对天津市工业源VOCs排放总量的贡献率达88.25%,其中大港、临港经济区和天津经济技术开发区为滨海新区工业源VOCs排放的主要功能区。  相似文献   

12.
基于海南省2016年工业环境统计数据,通过自下而上的方法建立海南省2016年工业大气污染源排放清单,并利用中国多尺度排放清单模型(MEIC)排放清单进行背景源补充,使用CALPUFF模型进行大气污染模拟。污染物排放清单结果显示,2016年海南省SO_2、NO_x、CO、PM_(2.5)、PM(10)、黑碳(BC)、有机碳(OC)、挥发性有机物(VOCs)和NH3的排放量分别为1.50×10~4、5.10×10~4、4.56×10~5、2.34×10~4、2.10×10~4、3.50×10~3、1.20×10~4、4.96×10~4、6.50×10~4 t,其中SO_2主要排放源为化石燃料固定燃烧源(分担率66.67%),NO_x主要排放源为交通源(分担率51.18%),CO、PM_(10)、PM_(2.5)主要排放源为生活源(分担率分别59.01%、81.28%和87.62%),VOCs主要排放源为工业溶剂使用源(分担率75.91%),NH_3主要排放源为农业源(分担率93.54%)。排放量较大的区域集中在儋州市、澄迈县一带。SO_2、NO_x年均最大浓度均出现在海口市,PM_(10)、PM_(2.5)年均最大浓度均出现在定安县。交通源对全省污染物浓度贡献突出,工业源虽然对颗粒物浓度贡献率较低,但仍需加强PM_(2.5)治理。  相似文献   

13.
基于机动车排放因子(MOVES)模型和地理信息系统(ArcGIS)技术,建立了西安市2017年分辨率为1km×1km的机动车污染物排放清单。结果显示:2017年西安市机动车污染物PM_(2.5)、PM_(10)、NO_x(NO+NO_2)、NO、NO_2、N_2O和挥发性有机物(VOCs)的年排放总量分别为126.1×10~4、138.2×10~4、2 884.2×10~4、2 577.8×10~4、306.4×10~4、27.9×10~4、1 281.2×10~4 kg;柴油车是PM_(2.5)、PM_(10)和NO_x排放的主要来源,贡献率分别为80.2%、79.5%和75.8%;VOCs和N_2O则主要来自汽油车,贡献率分别为74.2%、89.7%;总体看来,研究区域内不同污染物的空间分布规律相似,这与西安市公路分布有关,PM_(2.5)和NO_x的排放主要集中在主城区及周边县区的高速路和国道,而VOCs的排放主要集中在主城区二环及环内。  相似文献   

14.
通过实地调查和统计获得区县尺度排放源活动水平数据,采用物料衡算法和排放因子法,估算三明市2015年大气污染物排放清单,选取经纬度坐标、路网、土地类型和人口等数据作为权重因子,利用地理信息系统(GIS)技术建立1km×1km高精度网格,分析各类排放源污染排放的数值和空间特征。结果显示,2015年三明市SO_2、NO_x、挥发性有机物(VOCs)、PM_(10)、PM_(2.5)和NH_3的排放总量分别为5.22×10~4、5.80×10~4、1.88×10~5、7.92×10~4、3.23×10~4、2.26×10~4 t。污染贡献方面:工业源是SO_2的排放主要来源;NO_x的主要排放源为工业源和移动源;天然源对VOCs排放有显著贡献;工业源和扬尘源是PM_(10)和PM_(2.5)的主要贡献源;NH_3排放主要来自农业源。空间分布方面:SO_2、NO_x、PM_(2.5)和PM_(10)的排放主要集中在城镇化程度高的永安市和梅列区,VOCs与NH_3排放则与植被分布和农业生产水平密切相关。与2007年和2009年三明市的排放清单对比,发现工业排放控制政策及秸秆禁烧令的实施对PM_(2.5)、PM_(10)和VOCs的减排有明显效果。  相似文献   

15.
为研究广东省“十四五”时期机动车污染减排潜力,设置3种方案进行减排分析。结果表明,淘汰老旧机动车能较好地削减机动车NOx排放量,而对挥发性有机物(VOCs)的净减排效果不佳。淘汰国Ⅱ及以下排放标准汽油车、国Ⅲ及以下排放标准柴油货车情况下,广东省各市NOx削减比例均超过10%。汕尾市、湛江市、茂名市、云浮市、揭阳市、阳江市、潮州市、清远市、河源市和梅州市淘汰国Ⅱ及以下排放标准机动车、50%国Ⅲ排放标准柴油货车能达到NOx减排10%以上的效果,而珠三角地区城市需全面淘汰国Ⅲ及以下排放标准柴油货车才能达到该减排效果。为遏制广东省O3浓度上升势头并推动其进入下降通道,要加强“油、路、车”协同管控,珠三角地区应采取比粤东、粤西和粤北地区更有力的协同控制措施。  相似文献   

16.
南昌市夏季PM_(2.5)中多环芳烃来源解析   总被引:1,自引:0,他引:1  
在南昌市设立了5个不同功能区采样点,分别为居民区、工业区、商业区、交通干线区以及郊区,于2008年夏季进行PM2.5采样,对样品进行测定和分析后,通过因子分析法判断PM2.5中多环芳烃(PAHs)的主要污染源,再利用多元线性回归法确定各主要污染源对PAHs的贡献率。结果表明,南昌市夏季PM2.5中PAHs的主要污染源为车辆排放源、高温加热源、燃煤污染源,它们对PAHs的贡献率分别为37.9%、28.2%和22.0%;要控制南昌市夏季PM2.5中的PAHs,主要是要对机动车尾气排放量进行控制,并加强机动车尾气治理工作。  相似文献   

17.
石化行业是中国大气挥发性有机物(VOCs)的重要来源。以中国某新建典型石化企业为例,综合采用不同核算方法估算并比较了石化企业典型排放环节VOCs的排放结果;并在此基础上计算了石化企业典型排放环节本地化排放系数。结果表明,典型石化企业各环节VOCs排放量贡献分别为:储罐50.4%、废水收集与处理29.0%、火炬8.3%、装卸5.2%、设备密封点3.4%、循环冷却水2.4%、燃烧烟气0.8%、工艺废气0.5%;在装卸、设备密封点、废水收集与处理、循环冷却水环节,不同核算方法造成核算结果差异较大,排放系数法核算结果为本研究方法核算结果的数倍,其中装卸过程为4.2倍(无回收设施)和16.4倍(含回收设施),设备密封点为4.4倍(泄漏筛分法)和55.4倍(相关方程法),废水收集与处理为2.1倍,循环冷却水为2.1倍;《大气挥发性有机物源排放清单编制技术指南》中石油炼制企业的VOCs排放系数为本研究1.8倍,因此石化企业在建立排放清单时应开展本地化研究,建立本地化系数;研究结果对于中国建立石化企业VOCs排放清单提供了一定支撑。  相似文献   

18.
对青岛市重点工业行业橡胶制造业、塑料制造业、化学品制造业、涂料制造业、石油加工业、金属制品业、制鞋业、包装印刷业、铁路船舶制造业、汽车制造业的挥发性有机物(VOCs)排放浓度开展了调研,探讨了其对二次污染物O3和二次有机气溶胶生成的贡献,并评价了非致癌风险。结果表明,青岛市各重点工业行业排放VOCs浓度总体较低,石油加工业和化学品制造业VOCs排放浓度占比较大,而金属制品业、铁路船舶制造业、汽车制造业等行业排放的废气VOCs对二次污染物生成的贡献较高。化学品制造业、包装印刷业和汽车制造业排放的废气VOCs的非致癌风险总和略超过了风险阈值1,主要是由芳香烃类引起的,普通人群不会直接接触工业行业排放的废气,基本处于安全水平,一线工人可能存在一定潜在危害,应加强防护。对工业企业进行VOCs治理,除控制排放总量外,更应该针对行业类型、VOCs来源及组分进行有的放矢的管控。  相似文献   

19.
四川省汽车保有量2017年位列全国第7位,油品储运销过程中挥发性有机物(VOCs)排放压力巨大。利用排放因子法,结合四川省4 492座加油站的油品销售量,编制了四川省2017年加油站VOCs排放清单。另一方面,对四川省不同片区的VOCs排放特征及油气回收关键参数进行了现场实测。结果表明:四川省加油站VOCs排放量共12 294.54t,排放区域主要集中在成都市、绵阳市和宜宾市等地区;四川省四大片区VOCs排放浓度,加油环节攀西片区最高,达到7 076.86μg/m~3,卸油环节川东北片区最高,达到9 638.53μg/m~3,均是其他片区的2~3倍,加油和卸油环节排放的异戊烷最高占比(质量分数)可分别达到70.1%和67.4%;四川省油气回收系统达标情况仍然比较严峻,不达标率高达47%,密闭性和气液比不达标率尤为显著,集中式油气回收系统不达标率高于分散式。  相似文献   

20.
在武汉市工业区和交通区展开了PM_(2.5)样品采集,研究了PM_(2.5)中二元羧酸的化学组成、污染水平及来源。二元羧酸在工业区为103.1~2 219.2ng/m~3,年平均值为958.4ng/m~3;在交通区为66.9~2 176.8ng/m~3,年平均值为749.7ng/m~3。丙二酸/丁二酸(C_3/C_4,质量比,下同)表明,武汉市二元羧酸主要来自机动车尾气排放;己二酸/壬二酸(C_6/C_9)表明,二元羧酸的人为源贡献大于自然源。正定矩阵因子分解(PMF)模型解析结果显示,工业区中二次源占13.7%,建筑扬尘占23.1%,机动车尾气排放占37.0%,生物质燃烧占26.2%;交通区中二次源占8.9%,建筑扬尘占24.9%,机动车尾气排放占51.8%,生物质燃烧占14.4%。潜在源区贡献因子(PSCF)分析得出,武汉市夏季二元羧酸主要受到南部季风的影响,冬季主要受到西部冷空气的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号