首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
超临界流体技术在废旧塑料解聚中的应用   总被引:4,自引:0,他引:4  
介绍了超临界流体及其特性,并综述了不同废旧塑料在超临界流体中解聚的应用现状,指出超临界解聚技术是一项处理废旧塑料的“绿色技术”,为废旧塑料的回收利用开辟了新的途径,最后展望了该技术的应用前景及需要研究解决的问题。  相似文献   

2.
超临界流体技术在环境保护中的应用   总被引:3,自引:0,他引:3  
简要介绍了超临界流体萃取和超临界水氧化的基本原理及优点 ,综述了超临界流体技术在废水处理、固体废物处理及污染监测中的开发和应用  相似文献   

3.
超临界流体萃取技术是20世纪70年代末兴起的一种新型分离、精制技术,近年来发展迅速,被广泛应用于化工、食品、医药、生物技术、材料制备等领域.将超临界流体萃取技术用于环境保护则是一个新的研究方向,因此,文章综述了超临界流体萃取技术的基本原理及其在环境保护方面的应用.  相似文献   

4.
简要介绍了超临界流体萃取和超临界水氧化的基本原理及优点,综述了超临界流体在废水处理、固体废物处理及污染监测中的开发和应用。  相似文献   

5.
超临界技术的发展现状与前景展望   总被引:2,自引:0,他引:2  
简要介绍了超临界流体的基本性质,综述了超临界技术在萃取分离、环境保护、材料科学、反应工程、生物技术、清洗工业等方面的发展状况,并对超临界技术的发展前景作了展望。  相似文献   

6.
研究了尼龙6在亚超临界水中的解聚反应,以期为废旧尼龙6的回收利用提供技术参数.实验分别利用气质联用仪和紫外分光光度计对解聚后的液相产物进行定性和定量分析,并考察了不同的反应温度、反应压力和反应时间对液相产物收率的影响.结果表明,液相产物绝大部分为己内酰胺;解聚的最佳条件为370 ℃、25 MPa、60 min;己内酰胺最大收率为96%.通过动力学分析和Arrhenius关系计算,得出尼龙6亚超临界水解聚的活化能为64.4 kJ/mol.  相似文献   

7.
超临界CO_2流体环境中线路板分层实验分析   总被引:2,自引:0,他引:2  
在超临界CO2流体环境下,当温度达到240℃以上时,印刷线路板就会发生分层现象。同时,在实验中发现在非超临界流体环境下,当温度达到260℃以上时,线路板也会发生分层现象。从线路板粘接材料发生热解反应的角度出发,在对比超临界CO2流体环境下与非超临界流体环境下的线路板分层效果的基础上,对超临界CO2流体环境下的线路板分层做出合理分析,最后发现临界CO2流体对线路板分层过程有促进作用,并对其分层效果有优化作用。  相似文献   

8.
在超临界CO2流体环境下,当温度达到240℃以上时,印刷线路板就会发生分层现象。同时,在实验中发现在非超临界流体环境下,当温度达到260℃以上时,线路板也会发生分层现象。从线路板粘接材料发生热解反应的角度出发,在对比超临界CO2流体环境下与非超临界流体环境下的线路板分层效果的基础上,对超临界CO2流体环境下的线路板分层...  相似文献   

9.
文中综述了多氯联苯的分析技术及其研究进展。介绍了样品前处理技术如索氏萃取法、超声萃取法、微波辅助萃取、超临界流体萃取、加速溶剂萃取等在土壤样品中多氯联苯分析中的应用;阐述了气相色谱、液相色谱、气质联用技术在土壤样品中多氯联苯的检测,并对土壤中未来多氯联苯检测技术的发展提出了展望。  相似文献   

10.
本文介绍了近年来国内外对土壤中结合态农药的研究动向,叙述了土壤中农药的结合残留量、环境意义及结合残留的分析测试技术,尤其对超临界流体萃取结合残留的技术作了介绍,并对该领域的深入研究提出了还需要解决的问题  相似文献   

11.
废旧塑料是一种可以回收利用的资源。介绍并评述了废旧塑料的几种典型处理技术和再生利用方法 ,以及可降解塑料研究开发的情况。这些方法和技术对于治理白色污染具有重要作用  相似文献   

12.
In Kampala, Uganda, about 28,000 tons of waste is collected and delivered to a landfill every month. Kampala Capital City Authority (KCCA) records show that this represents approximately 40% of the waste generated in the city. The remaining uncollected waste is normally dumped in unauthorized sites, causing health and environmental problems. However, the organic fraction of domestic waste can provide an opportunity to improve livelihoods and incomes through fertilizer and energy production. This study characterized the municipal waste generated in Kampala and delivered to Kiteezi landfill between July 2011 and June 2012, that is, covering the dry and wet months. On each sampling day, waste was randomly selected from five trucks, sorted and weighed into different physical fractions. Samples of the organic waste from each truck were analyzed for total solids, major nutrients, and energy content. During the wet months, the waste consisted of 88.5% organics, 3.8% soft plastics, 2.8% hard plastics, 2.2% paper, 0.9% glass, 0.7% textiles and leather, 0.2% metals, and 1.0% others. During the dry months, the waste consisted of 94.8% organics, 2.4% soft plastics, 1.0% hard plastics, 0.7% papers, 0.3% glass, 0.3% textile and leather, 0.1% metals, and 0.3% others. The organic waste on average had a moisture content of 71.1% and contained 1.89% nitrogen, 0.27% phosphorus, and 1.95% potassium. The waste had an average gross energy content of 17.3 MJ/kg. It was concluded that the organic waste generated can be a suitable source of some plant nutrients that are useful especially in urban agriculture.
Implications:?The result of the waste characterization in Kampala was found to be significantly different from that obtained for other Sub-Saharan African (SSA) cities, showing that studies assuming average values for the waste fractions are likely to result in erroneous results. Furthermore, no reduction in organic fraction of the waste was noticed when compared with a study done two decades ago in spite of greatly improved economic status of Kampala city, a finding that is not in agreement with several other similar studies done for other SSA cities.  相似文献   

13.
Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0–70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.

Implications Although waste combustion is one of major anthropogenic sources of atmospheric mercury emission, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated speciated mercury emissions from the combustions of municipal solid wastes, sewage treatment sludge with/without waste plastics, industrial waste mixtures, waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form in all combustion cases and its concentration in the gas had large fluctuation. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.  相似文献   

14.
Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250–300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.  相似文献   

15.
废旧家用电器回收利用及处理处置技术   总被引:9,自引:0,他引:9  
随着大量家用电器进入报废期,废旧家用电器的资源化回收利用成为一个新的环境问题。介绍了国内外废旧家电的回收利用状况、处理方法和工艺流程,重点介绍了废印刷线路板的处理工艺和废塑料的再生利用,并针对我国的实际问题提出了相应的措施和办法。  相似文献   

16.
Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0-70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.  相似文献   

17.
以污水处理厂脱水污泥和废塑料为主要原料 ,通过污泥处理、聚合物改性 ,采用热塑复合法可以制备出聚合物复合材料及对应的微孔材料 ,影响材料性能的主要因素有污泥形态、废塑料种类以及它们之间的质量比等参数。最终材料表现出木材的很多性能 ,是一种使污泥高附加值利用的有效方法。  相似文献   

18.
随着社会的发展 ,人们对物质的要求日益增大 ,而自然资源和能源却日趋匮乏 ;另一方面 ,可再生利用的高分子材料的消耗所产生的废弃物也造成了严重的污染 ,威胁到人类的生存。有人提出废旧塑料的资源化是 2 1世纪全人类的重要课题。本文综述了国内外废旧塑料资源化新技术及其进展。  相似文献   

19.
The emission of polycyclic aromatic hydrocarbons (PAH) caused by municipal waste incineration varies according to waste composition and operating parameters such as furnace temperature and excess air. However, to obtain a sample sufficient to measure the emission of PAH at trace levels, it is necessary to operate the incinerator for many hours. Since during these lengthy periods it has not always been possible to maintain stable conditions, it is very difficult to determine the relationship between the emission and waste composition.

In our basic research, therefore, we used municipal waste with an artificially regulated composition for our combustion experiments, and by using an experimental Incinerator we examined the emission behavior of PAH with respect to changes in waste composition and combustion conditions. The following facts were revealed by the results: ? The PAH found in the flue gas were predominantly the more volatile compounds.

? When municipal waste was incinerated at over 850 °C, the concentration of PAH in the flue gas increased rapidly as the proportion of plastics in the waste increased from 0 to 24 percent.

? The elimination of plastics from municipal waste by separate collection and the improvement of combustion conditions can effectively diminish the emission of PAH.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号