首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.  相似文献   

2.
Jaouani A  Tabka MG  Penninckx MJ 《Chemosphere》2006,62(9):1421-1430
In order to decolourise olive oil mill wastewaters (OOMW) efficiently, production and differential induction of ligninolytic enzymes by the white rot Coriolopsis polyzona, were studied by varying growth media composition and/or inducer addition. Among various possible inducers, veratryl alcohol appeared to be the most efficient to enhance specific productions of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase by a factor of 18.5, 20.8 and 55, respectively. Ligninolytic enzymes were better produced in glucose based medium with a low nitrogen level (2.2 mM) under O2 atmosphere. The addition of 5 mM veratryl alcohol resulted in a maximal production of LiP, whereas maximal MnP and laccase were obtained at 10 mM. LiP production was totally repressed in presence of 100 microM Mn2+. The extrapolation of these conditions on OOMW based media was carried out at different effluent dilutions and the possible role of the different ligninolytic enzymes in OOMW decolourisation was studied. A better effluent decolourisation was obtained under LiP induction condition (5 mM veratryl alcohol) than when LiP was repressed (100 microM Mn2+). Furthermore, high levels of laccase had a detrimental effect on OOMW decolourisation concomitant to the formation of soluble polymeric aromatic compounds.  相似文献   

3.
Ligninolytic enzymes, manganese peroxidase (MnP), laccase, and lignin peroxidase (LiP), from white-rot fungi were used in an attempt to treat methoxychlor (MC), a chemical widely used as a pesticide. MnP and laccase in the presence of Tween 80 and 1-hydroxybenzotriazole (HBT), respectively, and LiP were found to degrade MC, and MnP-Tween 80 decreased MC levels by about 65% after a 24-h treatment. MC was converted into methoxychlor olefin (MCO) and 4,4'-dimethoxybenzophenone by MnP-Tween 80 or laccase-HBT treatment. These results indicate that ligninolytic enzymes from white-rot fungi can catalyze the oxidative dechlorination of MC. Moreover, a metabolite MCO was also degraded by MnP-Tween 80 or laccase-HBT treatment.  相似文献   

4.
Thirty different white rot strains were screened for Orange G and Remazol Brilliant Blue R (RBBR) decolorization on agar plates. Three promising strains, Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus, selected on the basis of this screening, were used for decolorization study in liquid media. All three strains efficiently decolorized both Orange G and RBBR, but they differed in decolorization capacity depending on cultivation conditions and ligninolytic enzyme production. Two different decolorization patterns were found in these strains: Orange G decolorization in I. resinosum and P. calyptratus was caused mainly by laccase, while RBBR decolorization was effected by manganese peroxidase (MnP); in D. squalens laccase and MnP cooperated in the decolorization processes.  相似文献   

5.
Ogawa N  Okamura H  Hirai H  Nishida T 《Chemosphere》2004,55(3):487-491
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051.  相似文献   

6.
Some researches studied the removal of steroid estrogens by enzymatic treatment, however none verified the residual estrogenicity after the enzymatic treatment at environmental conditions. In this study, the residual estrogenic activities of the key natural and synthetic steroid estrogens were investigated following enzymatic treatment with horseradish peroxidase (HRP) and laccase from Trametes versicolor. Synthetic water and municipal wastewater containing environmental concentrations of estrone, 17beta-estradiol, estriol, and 17alpha-ethinylestradiol were treated. Liquid chromatography-mass spectrometry analysis demonstrated that the studied steroid estrogens were completely oxidized in the wastewater reaction mixture after a 1-h treatment with either HRP (8-10 U ml(-1)) or laccase (20 U ml(-1)). Using the recombinant yeast assay, it was also confirmed that both enzymatic treatments were very efficient in removing the estrogenic activity of the studied steroid estrogens. The laccase-catalyzed process seemed to present great advantages over the HRP-catalyzed system for up-scale applications for the treatment of municipal wastewater.  相似文献   

7.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) greatly hamper their degradation in liquid media. The use of an organic solvent can assist the degradative action of ligninolytic enzymes from white rot fungi. The enzymatic action of the enzyme manganese peroxidase (MnP) in media containing a miscible organic solvent, acetone (36% v/v), was evaluated as a feasible system for the in vitro degradation of three PAHs: anthracene, dibenzothiophene and pyrene. These compounds were degraded to a large extent after a short period of time (7, 24 and 24h, respectively), at conditions maximizing the MnP-oxidative system. The initial amount of enzyme present in the reaction medium was determinant for the kinetics of the process. The order of degradability, in terms of degradation rates was as follows: anthracene>dibenzothiophene>pyrene. The intermediate compounds were determined using gas chromatography-mass spectrometry and the degradation mechanisms were proposed. Anthracene was degraded to phthalic acid. A ring cleavage product of the oxidation of dibenzothiophene, 4-methoxybenzoic acid, was also observed.  相似文献   

8.
The production of ligninolytic enzymes by the fungus Phanerochaete chrysosporium in a fixed-bed tubular bioreactor, filled with cubes of nylon sponge, operating in semi-solid-state conditions, was studied. Maximum individual manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of 1293 and 225 U/l were detected.The in vitro decolourisation of two structurally different dyes (Poly R-478, crystal violet) by the extracellular liquid obtained in the above-mentioned bioreactor was monitored in order to determine its degrading capability. The concentration of some compounds (sodium malonate, manganese sulphate) from the reaction mixture was optimised in order to maximise the decolourisation levels. A percentage of Poly R-478 decolourisation of 24% after 15 min of dye incubation was achieved.On the other hand, a methodology for a long treatment of these dyes based on the continuous addition of MnP enzyme and H(2)O(2) was developed. Moreover, this enzymatic treatment was compared with a photochemical decolourisation process. The former allowed to maintain the degradation rate almost constant for a long time, resulting in a decolourisation percentage of 70% and 30% for crystal violet and Poly R-478, respectively, after 2 h of treatment. As for the latter, it was not able to degrade Poly R-478, whereas crystal violet reached a degradation of 40% in 2 h.  相似文献   

9.
Bisphenol A is an endocrine disrupting compound, which is ubiquitous in the environment due to its wide use in plastic and resin production. Seven day old cultures of the litter-decomposing fungus Stropharia coronilla removed the estrogenic activity of bisphenol A (BPA) rapidly and enduringly. Treatment of BPA with purified neutral manganese peroxidase (MnP) from this fungus also resulted in 100% reduction of estrogenic activity, as analyzed using a bioluminescent yeast assay, and in the formation of polymeric compounds. In cultures of Stropharia rugosoannulata, estrogenic activity also quickly disappeared but temporarily re-emerged in the further course of cultivation. LC-MS analysis of the extracted estrogenic culture liquid revealed [M−H] ions with m/z values of 219 and 235. We hypothesize that these compounds are ring fission products of BPA, which still exhibit one intact hydroxyphenyl group to interact with estrogen receptors displayed by the yeast.  相似文献   

10.
利用前期实验筛选出的4株优势白腐真菌,处理阿维菌素废水经厌氧处理后的出水,实验结果表明,白腐真菌对该废水具有较好的处理效果,且其生长特性与处理效果基本正相关。  相似文献   

11.
The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at H?lv?l? (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.  相似文献   

12.
白腐真菌的广谱生物降解性研究进展   总被引:1,自引:0,他引:1  
白腐真菌由于能够降解木质素而在地球的碳循环中发挥着不可或缺的作用.由胞外的过氧化物酶类和其他次级代谢产物组成的木质素降解系统除了能够降解木质素外,对众多的异生物质也具有广谱的生物降解性,赋予了白腐真菌巨大的环境工业应用潜力.对白腐真菌的木质素降解系统和其广谱的生物降解性进行了介绍与展望.  相似文献   

13.
Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.  相似文献   

14.
The biocatalytic elimination of the endocrine disrupting chemicals (EDC) nonylphenol (NP) and bisphenol A (BPA) and the personal care product ingredient triclosan (TCS) by the enzyme preparation from the white rot fungus Coriolopsis polyzona was investigated. Analysis of variance methodology showed that the pH and the temperature are statistically significant factors in the removal of NP, BPA and TCS. The elimination of NP and TCS was best at a temperature of 50 degrees C and the disappearance of BPA at 40 degrees C, whereas the most suitable pH for all three micropollutants was 5. After a 4-h treatment of the three target compounds at concentrations of 5 mg l(-1) all of the NP and BPA were eliminated. In the case of TCS, 65% was removed after either a 4 or an 8-h treatment. The utilisation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) in the laccase/mediator system significantly increased the efficiency of the enzymatic treatment. The elimination of NP and BPA was directly associated with the disappearance of the estrogenic activity. Mass spectrometry analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical polymerization mechanism of NP, BPA and TCS. These oligomers were produced through the formation of C-C or C-O bonds. The polymerization of NP produced dimers, trimers, tetramers and pentamers which had molecular weights of 438, 656, 874 and 1092 amu respectively. The polymerization of BPA produced dimers, trimers and tetramers which had molecular weights of 454, 680 and 906 amu. Finally, the polymerization of TCS produced dimers, trimers and tetramers which had molecular weights of 574, 859 and 1146 amu.  相似文献   

15.
An efficient sequential, biological and photocatalytic treatment to reduce the pollutant levels in wastewater due to the bleaching process during paper production is reported. For a biological pre-treatment, 800 ml of non-sterilized effluent was inoculated with Trametes versicolor immobilized in polyurethane foam, with 25 g l(-1) glucose, 6.75 mM CuSO(4), and 0.22 mM MnSO(4) added, and cultured at 25 degrees C with an air flow of 800 ml min(-1) for 8d. The fungus did not inhibit growth of the heterotropic populations of the effluent. After 4d of culture, the chemical oxygen demand (COD) reduction and colour removal (CR) were 82% and 80%, respectively, with laccase (LAC) and manganese peroxidase (MnP) activities of 345 U l(-1) and 78 U l(-1), respectively. The COD reduction and CR correlated positively (p<0.0001) with LAC and MnP activities. Chlorophenol removal was 99% of pentachlorophenol, 99% of 2,3,4,6-tetrachlorophenol (2,3,4,6-TCP), 98% of 3,4-dichlorophenol (3,4-DCP) and 77% of 4-chlorophenol (4-CP), while 2,4,5-trichlorophenol (2,4,5-TCP) increased to 0.2 mg l(-1). The pre-treated effluent was then exposed to a photocatalytic treatment. The treatment with photolysis resulted in 9% CR and 46% COD reduction, 42% CR and 60% COD reduction by photocatalysis, and 62% CR and 85% COD reduction by heterogeneous photocatalysis with the system TiO(2)/Ru(x)Se(y) (Fig. 4). With this treatment the bacterial and fungal populations also decreased by 5 logarithmic units with respect to the biological treatment alone (Fig. 5). The total sequential treatment resulted in a 92% CR (from 5800 UC), 97% COD reduction (from 59 g l(-1)) and 99% chlorophenol removal at 96 h and 20 min.  相似文献   

16.
白腐真菌降解经微电解预处理二硝基重氮酚废水的研究   总被引:4,自引:0,他引:4  
利用自行培养、驯化的白腐真菌,对经过微电解预处理的二硝基重氮酚(DDNP)废水进行了生物降解试验.结果表明,经过微电解预处理后的DDNP废水(含CODCr467 mg/L)经生化处理108 h后,出水中CODCr在131 mg/L左右,达到国家二级排放标准;其中的苯胺类、硝基类的去除率达到99.9%以上,达到国家一级排放标准.对试验所获得的时间序列进行动力学研究结果证明,白腐真菌降解经微电解预处理后的DDNP废水的反应为准一级动力学反应.  相似文献   

17.
This study investigated the fate of estrogenic substances in an urban river receiving discharge from wastewater treatment plants (WTPs) by flux calculation, focusing on the middle reaches of the Tama River in Tokyo, which is one of the most urbanized rivers in Japan. The level of estrogenic activity flux was almost negligibly small at the upstream station. The level was considerably raised after inflows from the WTPs and then the level declined in the lower reaches of the river. When contributions of estrogenic substances to estrogenic activity were estimated, estrone (E1) was the primary contributor to the total estrogenic activity in all the sampling stations, followed by estradiol (E2). The contribution of nonylphenol to estrogenic activity was small. The E1 and E2 accounted for approximately 90% or more of estrogenic activity in the Tama River. As for the total fluxes of the estrogenic substances in the study area in the Tama River, the proportion of flux associated with WTP discharge was approximately 100% of the total fluxes, and the effects of the tributaries flowing into the river were almost negligible. When the reduction ratios of estrogenic activity were calculated by the flux, the ratios were found to increase toward the lower reaches of the river. Similar changes were observed for E1. Meanwhile, the change of reduction ratios for E2 was different from that observed for estrogenic activity.  相似文献   

18.
The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S. hirsutum showed high resistance to methoxychlor 100 ppm, and the mycelial growth was fully completed within 8 days of incubation at 30 degrees C. Methoxychlor in liquid culture medium was gradually converted into 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethylene, 2-chloro-1,1-bis(4-methoxyphenyl) ethane, 2-chloro-1,1-bis(4-methoxyphenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene, indicating that methoxychlor is dominantly degraded by dechlorination and dehydrogenation. MCF-7 cells were demonstrated to proliferate actively at the 10-5 M concentration of methoxychlor. However, cell proliferation was significantly inhibited by the incubation with methoxychlor culture media containing S. hirsutum. In addition, the expression level of pS2 mRNA was increased at the concentration (10-5 M) of methoxychlor. The reductive effect of S. hirsutum for methoxychlor was clear but not significant as in the proliferation assay.  相似文献   

19.
The white-rot fungus Trametes versicolor growing in submerged culture on a basal medium, with barley bran as a carbon source, produced two laccase isoenzymes LacI and LacII. The addition of metal ions to the culture medium was performed to improve the total laccase activity and to determine the effect on the production of laccase isoenzymes. From all the tested metals, only Cu2+ increased laccase activity (up to 12-fold with respect to control cultures) and T. versicolor in presence of all metals produced the two isoenzymes in different proportion with ratios of activity (LacI/LacII) varying between 0.11 and 0.51. This factor played an important role in the decolourisation of the textile dye Indigo Carmine.  相似文献   

20.
The aim of the present study was to compare the degrading capabilities of eight ligninolytic fungal representatives towards a technical mixture of polychlorinated biphenyls (Delor 103). Axenic cultures of the fungi, either in complex or N-limited liquid media, were spiked with the technical mixture of Delor 103. All of the fungal strains were able to degrade the pollutant significantly after 6weeks of incubation in both media. Outstanding results were achieved by the treatment with Pleurotus ostreatus, which removed 98.4% and 99.6% of the PCB mixture in complex and mineral media, respectively. This fungus was the only one capable of breaking down penta- and hexachlorinated biphenyls in the complex medium. Ecotoxicological assays performed with the luminescent bacterium Vibrio fischeri demonstrated that all of the fungal strains employed in this study were able to remove the toxicity only temporarily (e.g., after 28d of incubation), while P. ostreatus was capable of suppressing the toxicity associated to PCBs along the whole incubation period in both media. We also performed an extensive set of qualitative GC/MS analyses and chlorinated derivatives of hydroxy- and methoxy-biphenyls were detected along with monoaromatic structures, i.e. chlorobenzoic acids, chlorobenzaldehydes and chlorobenzyl alcohols. This results indicate that both intracellular (cytochrome P-450 monooxigenase, aryl-alcohol dehydrogenase and aryl-aldehyde dehydrogenase) and extracellular (ligninolytic enzymes) enzymatic systems could be involved in the biotransformation of PCB by ligninolytic fungi. The data from this work also document that the fungi are able to degrade further the main metabolites on the PCB pathway (i.e. chlorobenzoic acids) simultaneously with PCBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号