首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
废旧计算机CRT监视器的管理和资源化技术   总被引:8,自引:0,他引:8  
分析了废旧计算机CRT监视器的材料组成,并且阐明了它对环境和人体健康的潜在危害,同时比较了国内外相关管理现状,总结了目前已有的资源化技术,主要是拆解技术,并且介绍了目前国内外的资源化实践,并提出有关建议。  相似文献   

2.
电镀重金属污泥的无害化处置和资源化利用   总被引:4,自引:0,他引:4  
从电镀重金属污泥的特点及其危害性谈起,综述了目前国内外电镀污泥的无害化处置和资源化利用的各种技术及研究进展。  相似文献   

3.
废液晶显示屏的环境风险与资源化策略   总被引:3,自引:1,他引:2  
随着液晶显示屏(LCD)的快速普及,废弃LCD所引发的环境问题引起人们的广泛关注,采用科学有效的方法对其进行资源化已成为国内外学者的研究热点.分析了对中国废LCD的产生趋势,介绍了LCD的结构与材料组成并阐述了其潜在的环境风险,总结了当前国内外废LCD的资源化技术,并指出目前该研究领域中存在的问题及后续的研究重点.  相似文献   

4.
本文简述了国内外污水资源化的历史与现状、污水资源化常规技术及深度污水处理技术的发展与前景展望。对中水回用工程进行了技术经济分析,探讨了工业废水回用的可行性。提出了在我国进一步推广污水资源化措施的对策  相似文献   

5.
城市雨水资源化技术   总被引:4,自引:0,他引:4  
城市雨水资源化涉及到雨水的收集、处理、资源化技术以及城市雨水资源的科学管理等方面,通过对国内外这方面情况的比较,为促进我国城市雨水资源化的迅速发展,建立完善的雨水收集、处理和资源化的综合系统提出了希望和建议。  相似文献   

6.
选矿技术作为一种成熟的矿物分离技术已广泛应用于城市固体废弃物资源化领域 ,促进了环境的保护和资源的综合回收 ;同时也开辟了选矿技术新的应用领域。结合实例介绍国内外常用的各种城市固体废弃物的分选工艺 ,指出选矿技术的运用对固体废弃物的资源化有着重要的实际意义  相似文献   

7.
针对目前污水厂污泥传统处理方法存在的不足与弊端 ,提出污泥资源化利用技术是今后污泥最终处置的根本方式 ,并就目前研究的污泥热解制油技术、制取燃料技术、堆肥土地利用技术和热解制取吸附剂技术等主要的资源化利用技术进行了综述。  相似文献   

8.
选矿技术在城市固体废弃物资源化中的应用   总被引:1,自引:0,他引:1  
选矿技术作为一种成熟的矿物分离技术已广泛应用于城市固体废弃物资源化领域,促进了环境的保护和资源的综合回收;同时也开辟了选矿技术新的应用领域。结合实例介绍国内外常用的各种城市固体废弃物的分选工艺,指出选矿技术的运用对固体废弃物的资源化有着重要的实际意义。  相似文献   

9.
城市污水处理厂污泥资源化利用技术进展   总被引:7,自引:0,他引:7  
针对目前污水厂污泥传统处理方法存在的不足与弊端,提出污泥资源化利用技术是今后污泥最终处置的根本方式,并就目前研究的污泥热解制油技术、制取燃料技术、堆肥土地利用技术和热解制取吸附剂技术等主要的资源化利用技术进行了综述。  相似文献   

10.
新型污水生态工程处理技术   总被引:1,自引:0,他引:1  
介绍了近年来国内外出现的各种新型污水生态处理技术,并对它们的工艺及优缺点进行了综述,为全面实施污水处理与水资源综合利用相结合的污水无害化、资源化战略提供科学依据与技术基础.  相似文献   

11.
危险电子废物阴极射线管(cathode ray tube,CRT)是当前我国电子垃圾处理处置中首要必须解决的难题,其关键在于含铅锥玻璃的处珲处置.本研究探讨了真空碳热还原法从CRT锥玻璃中分离并回收有害重会属铅的同时同收钾和钠的规律.结果表明,铅、钾和钠的回收率随温度的升高、压力的降低、碳加入量的增加及保持时间的延长而增大;当温度为1 000℃、系统压力为10 Pa时,加入10%的碳粉并保持4 h,铅回收率接近100%,钠和钾的回收率分别为65.04%和50.55%.该方法为废弃阴极射线管玻璃的无害化和资源化提供了理论依据和实验数据.  相似文献   

12.
Abstract

Cathode ray tubes (CRTs) from computer monitors and television sets, which contain significantly high percentage of lead (Pb) by weight, represent an enormous and growing hazardous waste problem in the United States and worldwide. As a result, new technologies are needed to cope with current CRT waste stream and increased hazard and build new markets for its recycled components, developing commercially viable concrete composites, as well as minimizing CRT disposal problems. In this study, commercially available biopolymers, such as xan-than gum, guar gum, and chitosan, were used to encapsulate CRT glass waste, reducing the Pb leachability. The biopolymers utilized contain a number of useful functional groups, such as carboxyl (xanthan), hydroxyl (guar), and amino groups (chitosan), which play important roles in binding and stabilizing Pb onto concrete structures. The use of biopolymers in concrete systems can create a stable interpenetrating cross-linking composite that will last for many years. Results from these new composites show 30% higher compressive strength than standard concrete and a sharp decrease in lead leachability from several thousand milligrams per liter initially to an amount of three-tenths milligrams per liter or lower values (much lower than the U.S. Environment Protection Agency standard for hazardous waste of 5 mg/L by the toxicity characteristic leaching procedure test), and for some of the composites leachability is below even the standard for drinking water. This efficient and cost-effective CRT–biopolymer-concrete composite is a new class of biopolymer-modified material that can potentially perform a significant role in relieving the current CRT issue.  相似文献   

13.
Cathode ray tubes (CRTs) from computer monitors and television sets, which contain significantly high percentage of lead (Pb) by weight, represent an enormous and growing hazardous waste problem in the United States and worldwide. As a result, new technologies are needed to cope with current CRT waste stream and increased hazard and build new markets for its recycled components, developing commercially viable concrete composites, as well as minimizing CRT disposal problems. In this study, commercially available biopolymers, such as xanthan gum, guar gum, and chitosan, were used to encapsulate CRT glass waste, reducing the Pb leachability. The biopolymers utilized contain a number of useful functional groups, such as carboxyl (xanthan), hydroxyl (guar), and amino groups (chitosan), which play important roles in binding and stabilizing Pb onto concrete structures. The use of biopolymers in concrete systems can create a stable interpenetrating cross-linking composite that will last for many years. Results from these new composites show 30% higher compressive strength than standard concrete and a sharp decrease in lead leachability from several thousand milligrams per liter initially to an amount of three-tenths milligrams per liter or lower values (much lower than the U.S. Environment Protection Agency standard for hazardous waste of 5 mg/L by the toxicity characteristic leaching procedure test), and for some of the composites leachability is below even the standard for drinking water. This efficient and cost-effective CRT-biopolymer-concrete composite is a new class of biopolymer-modified material that can potentially perform a significant role in relieving the current CRT issue.  相似文献   

14.
ABSTRACT

Cathode ray tube (CRT) glass contains significant amounts of alkali and alkaline earth oxides, making it a useful by-product for use in the ceramics industry. Among the various alkali oxides present, those of strontium (SrO), calcium (CaO), and magnesium (MgO) are well known flux materials used widely in the ceramics industry. The most effective flux, SrO, is also a limited resource. In this study, we aimed to develop an environmentally friendly, low-cost method for recycling CRT waste by using it to produce transparent ceramic frits on an industrial scale. Four different samples were fabricated containing between 13 and 25 wt.% CRT panel glass. The color values, sintering behaviors, phases, and microstructural properties of the corresponding samples were analyzed and compared. The results indicate that a composition containing 25 wt.% CRT panel glass could pass the ISO 10545 test. Thus, the results confirm that CRT glass can be used to inexpensively produce transparent ceramic frits at an industrial scale.

Implications: The recycling of electronic waste (e-waste), including CRT waste, has increased by high rates of computer and TV consumption. This increase in consumption is likely to increase the rate at which CRTs are discarded. However, CRTs cannot be recycled in the desired amount. Owing to the high silicate, barium and strontium content of CRTs, it has great potential for glass ceramics such as frits. CRT panel glass to produce commercial transparent frit at low cost through an industrial production route for use in single-fire sintered products. Thus, CRT wastes can be recycled cost-effective, sustainable and environmentally friendly.  相似文献   

15.
Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.  相似文献   

16.
The cathode ray tube (CRT) glass is one of the most important problem that afflicts the electronic waste disposal whose solution lies in the identification of efficient and ecofriendly processes to detoxify and reutilize lead-contained funnel glass. This study is focused on a rapid screening of different chemical and mechanochemical processes to reduce lead content in waste CRT glass downgrading the risk correlated to it. In particular, as a possibility to clean waste CRT glass, treatments of lead-containing glass with different chelating agents (EDTA, NTA, ATMP, EDTMP and HEDP) were performed to evaluate their extractive capabilities. Furthermore, the influence of the grinding, the chelating agent functional groups (polyamino-carboxylic acid, carboxylic acid, and polyamino phosphonic acid), and the time and the temperature on lead content reduction were analyzed. ESEM and EDS analysis were performed on all the samples to evaluate the lead amount before and after the treatments.  相似文献   

17.
危险废物处理技术进展及若干建议   总被引:1,自引:0,他引:1  
较系统地论述了国内固体废物的目前状况、产量,分析了一些典型危险废物处理过程中存在的主要问题和解决方法,提出了深人开展危险废物处理与资源化研究的方向,并给出了环保部门应对危险废物进行处理的建议。  相似文献   

18.
This paper describes the results of three experiments performed with Continuously Regenerating Traps (CRTs®) in a controlled laboratory setting to elucidate the effects of fuel sulfur content, filter age, and storage and release effects on particle concentration. In the first experiment, a new CRT was tested using near zero sulfur Fischer-Tropsch fuel and low sulfur lubricating oil (420 ppm). The objective was to measure particle emissions from an emission control device that had not previously been exposed to sulfur under a variety of operating and dilution conditions. Next, a used CRT was evaluated using the same fuel and lubricating oil. Finally, the used uncatalyzed Diesel particulate filter (DPF) from the used CRT was replaced with a new, uncatalyzed DPF. The emissions from the used Diesel oxidation catalyst (DOC) + new DPF were evaluated and compared to those of the used CRT.Our laboratory results show that particle number emissions from the new CRTs are 99.9% lower than equivalent used CRT data collected on-road at an exhaust temperature of 370 °C. Even as the new CRT temperature was increased to almost 400 °C, emission levels were still at background levels for roadway aerosol and no nucleation mode was observed. With the used CRT, the nucleation mode particle number concentration increased sharply at an exhaust temperature of about 380 °C and remained high for the duration of the test. Mass emissions were estimated and found to exceed US EPA on-road standards. The used DOC + new DPF led to essentially the same number emissions as the used CRT, suggesting that these emissions arise mainly from release of sulfates stored by the DOC and not the uncatalyzed DPF.  相似文献   

19.
机械活化对CRT锥玻璃浸出动力学的影响   总被引:1,自引:0,他引:1  
通过研究CRT锥玻璃经机械活化后在硝酸溶液体系中浸出反应动力学规律,考察了机械球磨转速、浸出温度以及硝酸初始浓度对锥玻璃中铅的浸出效果影响。研究结果表明,锥玻璃经机械活化预处理后,反应活性显著增强,锥玻璃中铅浸出率大幅度提高。浸出反应的表观活化能和反应级数由109.4 kJ/mol和0.79降至54.3 kJ/mol和0.51。  相似文献   

20.
In the rural area of the Tibetan Plateau (RATP), the characteristics of domestic waste, people’s environmental awareness, people’s willingness to pay and their influence factors were firstly studied by questionnaires, field samplings and laboratory tests. The results showed that, in the RATP, the generation of domestic waste was 85 g?d-1 per capita and it was mainly composed of plastics, inert waste, kitchen waste, glass and paper. The waste bulk density, moisture content, ash, combustible and low calorific value were 65 kg?m-3, 19.25%, 44.90%, 35.85% and 10,520 kJ?kg-1 respectively. These characteristics are influenced by income sources and geographical position to some extent. Classified collection should be promoted widely on the household and the village basis. Compost, fermentation, landfill, bioreactor landfill and semi-aerobic landfill have been approved as effective techniques to treat domestic waste, except incineration. The distance of 50–800 m between each collection facility and the disposal fee of around $0.8 per month per household are suggested. For suburbs or large population villages, it’s better to treat domestic waste by the centralized way. But for the remote rural areas, a decentralized way is proposed. Significantly, the educational and economic influence should be considered into an effective domestic waste management program.

Implications:?The current situatio n of the environment in the rural areas of the Tibetan Plateau (RATP) was surveyed. There, the generation of organics and moisture of domestic waste were low but ash, recyclables, and combustibles were high. People’s knowledge of domestic waste was absent but their participation in management was strong. Based on the current situation, compost, fermentation, and landfill were effective but incineration was inappropriate. Also, a localized mini landfill for a cluster of villages and or settlements was the best method there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号