首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.  相似文献   

2.
Steady state kinetic models, which may be useful for the prediction from simple data, of the bioaccumulation of liophilic pollutants in ecosystems are discussed. For some aquatic species, such as Mytilus edulis, bioconcentration factors (BCFs) are closely related to water solubilities, and octanol: water partition coefficients (Kows). In other cases, more complex models are necessary to take account of metabolism and/or uptake from food. Somewhat different considerations apply in the estimation of bioaccumulation factors (BFs) for terrestrial organisms that cannot excrete lipophilic compounds by diffusion into ambient water. The relationship between half-lives and BFs is discussed. Metabolism is necessary for the effective elimination of lipophilic pollutants by terrestrial animals, and a model is proposed for the prediction of BFs from kinetic data obtained from in vitro metabolism studies. If such a model can be successfully developed it will make possible the prediction of bioaccumulation of pollutants by a wide range of species which cannot be studied by present methods.  相似文献   

3.
Binelli A  Provini A 《Chemosphere》2003,53(2):143-151
Several models of varying complexity have been used to predict pollutant concentrations in the higher levels of the food web from those in lower levels, but the role of the biomagnification process in aquatic food chains is still controversial. We used the fugacity-based approach to verify the transfer of PCBs through the pelagic food chain of Lake Iseo (N. Italy), sampling several zebra mussel specimens and some fish belonging of different trophic levels. The zebra mussel seems to be a suitable starting species for modelling the bioaccumulation process through the trophic web, not only because its physiological characteristics and population size do not change much with time (as do algae and zooplankton) but also because it takes up toxicants exclusively from the water, as shown by the application of two predictive trophic models commonly used. The data provided by one of those models were in good agreement with our experimental data on fish in Lake Iseo, that show a not negligible uptake from food for the top predator species (pike and perch) with an increase of about three times in comparison with the PCB levels measured in the zebra mussel specimens.  相似文献   

4.
We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes.  相似文献   

5.
GOAL, SCOPE AND BACKGROUND: Bioaccumulation and biomagnification of organic pollutants have been increasingly assessed and modeled during the last years. Due to the complexity of these processes and the large variability of food webs, setting generic assessments for these parameters is really difficult. Equilibrium models, based on a compound's lipophylicity, are the main tool in regulatory proposals, such as for identifying Persistent, Bioaccumulative and Toxic Substances (PBTs), although a refinement has been claimed by the scientific community. Toxicokinetic studies offer an alternative for these estimations, where biomagnification is modeled as a succession of bioaccumulation processes, each one regulated by toxicokinetic parameters. METHODS: A review of kinetic models covering species belonging to different trophic levels and with different ecological behavior has been conducted. The results were employed for setting a conceptual model for estimating the biomagnification potential in a generic food web, which was mathematically implemented through system dynamic models developed under data sheet software. Crystal Ball was then employed for allowing Monte Carlo based probabilistic calculations. Bioaccumulation laboratory assays have been performed to estimate toxicokinetic parameters in mussels (Mytilus edulis) with two PAHs (chrysene and benzo[a]pyrene). The contamination was delivered via food. The exposure period lasted more than one month followed then by a depuration phase. The contaminant content was determined on an individual basis on five replicates. RESULTS AND DISCUSSION:. The reviewed information suggested the development of a tiered conceptual biomagnification model, starting with a simplified food chain which can be refined to more realistic and complex models in successive levels. CONCLUSIONS: The mathematical implementation of the conceptual model offers tools for estimating the potential for bioaccumulation and biomagnification of chemicals under very different conditions. The versatility of the model can be used for both comparative estimations and for validating the model. RECOMMENDATIONS AND PERSPECTIVES: Since bioaccumulation and biomagnification processes are crucial elements for a proper risk assessment of chemicals, their estimation by mathematical models has been widely tested. However, inregulatory assessments, too simplistic models are still being used quite often. The biomagnification model presented in this study should be amore accurate alternative to these models. In comparison to other previously published biomagnification models, the present one covers the time variation of bioaccumulation using just a few toxicokinetic parameters.  相似文献   

6.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

7.
Despite the great concerns about dioxins in the marine environments, the biokinetics and bioaccumulation of these compounds in marine organisms remains little known. Using radioactive tracers the aqueous uptake, dietary assimilation efficiency, and elimination of dioxins were measured in marine phytoplankton, copepods and seabream. The calculated uptake rate constant of dioxins decreased with increasing trophic levels, whereas the dietary assimilation efficiency (AE) was 28.5-57.6% in the copepods and 36.6-70.2% in the fish. The dietary AE was highly dependent on the food concentrations and food type. The elimination rate constant of dioxin in the copepods varied with different exposure pathways as well as food concentration and food type. Biokinetic calculation showed that dietary accumulation was the predominant pathway for dioxin accumulation in marine copepods and fish. Aqueous uptake can be an important pathway only when the bioconcentration of dioxins in the phytoplankton was low.  相似文献   

8.
Many chemical, physiological, and trophic factors are known to affect bioaccumulation of polychlorinated biphenyls (PCBs) in biota. Understanding the primary factors affecting fish contamination is critical for predicting and assessing risks to upper-trophic level consumers, including humans. Here we identify PCB contamination pathways that could explain within- and between-species variability in fish concentration levels. Three freshwater river fish species (barbel, chub and bream) were sampled at three sites along the Rhone River (France) where fish consumption is partially prohibited because of PCB levels exceeding the European health-based benchmark. The trophic position was assessed using an innovative approach based on stable isotope analyses and Bayesian inference, which takes into account both isotope data variability and parameter uncertainty. The effect of foraging habitat on fish contamination was addressed using stable isotope mixing models. The fish trophic position and PCB concentrations were found to be unrelated while the exploitation of sediment detrital carbon as a food source appeared to be a critical factor affecting fish contamination. Fish length, PCB concentration of the sediment, and individual fish foraging habitat (exploitation of detrital versus planktonic carbon sources) explained 80% of within- and between-species variability observed in PCB concentrations. These results, obtained for species that have overlapping TPs and exploit different carbon sources, reveal that the important factor in fish PCB contamination is not only what fish consume, but also and essentially the feeding location.  相似文献   

9.
Bioaccumulation kinetics of five di-, tri- and tetrachlorobiphenyls from water and food were studied in laboratory experiments with goldfish (Carassius auratus). First order rate constants for uptake from water and clearance were determined after simultaneous administration of the five compounds in constant concentration, and were related to bioconcentration factors obtained in a static fish-water equilibration system. Biomagnification by retention of the PCB's from food was studied in a separate experiment.The difference in clearance rates for the chlorobiphenyls is the main reason for the different bioconcentration and biomagnification factors.Absorption efficiencies from water and food are higher than 40%. Clearance half lives vary from 10 days for 2,5-dichlorobiphenyl to 60 days for 2,3′,4′5-tetrachlorobiphenyl, which is correlalated with the decreasing aqueous solubilities of the compounds. Bioconcentration factors are between 0.4 × 106 and 1.5 × 106, biomagnification factors between 0.2 and 1.7, based on extractable lipids. Substitution of chlorine in the position para to the phenyl-phenyl bond influences hydrophobicity and bioaccumulation of the PCB's more strongly than substitution in ortho position.A kinetic model is developed which accounts for the influence of the lipid content of the fish on the clearance rate of a chemical. Reproducible determination of the bioconcentration potential of environmental chemicals is possible by use of an “internal bioaccumulation standard” in a kinetic test system. Food chain accumulation in fish is likely to be an important process only for persistent chemicals with extremely low water solubility.  相似文献   

10.
In order to compare the abilities of arctic and temperate fish to accumulate PCBs we conduct a metabolic analysis to determine how process rates in a mathematical fish contaminant model change with temperature. We evaluate the model by applying the original and adapted models to estimate PCB concentrations in lake trout (Salvelinus namaycush) in Trout Lake, Ontario, Canada, and in arctic char (Salvelinus alphinus) in Lake ?yangen, in the Norwegian high arctic. Modeled concentrations are, for the most part, within 50% of mean measured values and are comparable to the error associated with the fish data. In order to evaluate differences in fish bioaccumulation processes, the model is applied to hypothetical arctic and temperate systems, assuming the same contaminant input values in water and diet. The model predicts that temperate salmonids are able to biomagnify PCBs 6-60% more than arctic salmonids. For all congeners, the lower BMF(MAX) of arctic fish contribute to their lower concentrations. For congeners with log K(ow) < 6.0, the lower concentrations in arctic fish are also attributed to faster loss due to gill ventilation. Faster growth rates for temperate fish reduce the difference in bioaccumulation for congeners with log K(ow) > 7.0. These processes are controlled by the influence of lipid in the fish and their diet as well as the dependence of growth on temperature. We suggest that fish models originally calibrated for temperate systems may be directly applied to arctic lakes after accounting for the lipid content of the fish and their diet as well as water temperature.  相似文献   

11.
Fish mercury concentrations frequently increase after impoundment of a reservoir. Soil flooding releases organic matter and nutrients, providing food to bacterial communities that methylate inorganic mercury. Methylation and bioaccumulation are the primary pathways for mercury accumulation in fish. We investigated if changes in fish mercury concentrations could be predicted from the change in reservoir size. Data for three fish species, northern pike (Esox lucius), walleye (Stizostedion vitreum), and lake whitefish (Coregonus clupeaformis) from reservoirs in northern Manitoba and northern Quebec were used to evaluate four simple models of change in mercury with change in flooded area. For three additional fish species, all primary carnivores, the preferred model consisted of a single exponential enrichment term. This model successfully predicted two cases not used in model development-one with a large change in area and one with a small change in area. Models with good predictive skill can be developed when the underlying dynamics are known.  相似文献   

12.
Experiments were conducted to determine the kinetics and relative importance of aqueous and dietary uptake of cadmium by the freshwater isopod Asellus aquaticus (L.). Test animals were exposed during 30 days to aqueous Cd in a continuous flow system (exposure levels: 0.2 - 10 microg litre(-1)) and kept on a diet of previously contaminated Elodea sp. (range of Cd concentrations: 2-350 microg g(-1), dry weight). Preceding semi-static experiments on dosage-control of the dietary factor revealed a rapid uptake of Cd by Elodea, with relatively high concentration factors (CF), which ranged from 4.8 to 5.5 (dry weight log (CF) after 16 days). For Asellus uptake from water appeared to be the predominant route. Highly significant bioconcentration of cadmium from water was observed in the animals, even at exposure levels below 1.0 microg litre(-1). In the various treatments, direct uptake from water accounted for 50-98% of the body burdens after 30 days exposure. The experimental results were described with a first order one-compartment bioaccumulation model. Model parameter estimates (mean +/- standard error) were obtained for rate constant of uptake (560 +/- 110 day(-1)), rate constant of elimination (0.032 +/- 0.017 day(-1)) and assimilation efficiency of Cd uptake from food (1.1 +/- 0.7%). The (dry weight) bioconcentration factor (BCF) and bioaccumulation factor (BAF) for extrapolated steady state conditions were estimated at 18 000 (BCF) and 0.08 (BAF). Experiments conducted at two different pH levels (5.9 versus 7.6) revealed no significant effects of pH on the uptake of aqueous Cd by the isopods. The results are discussed in relation to their potential significance to the field situation.  相似文献   

13.

Background, aim, and scope

Lake Ellasjøen, located in the Norwegian high arctic, contains the highest concentrations of polychlorinated biphenyls (PCBs) ever recorded in fish and sediment from high arctic lakes, and concentrations are more than 10 times greater than in nearby Lake Øyangen. These elevated concentrations in Ellasjøen have been previously attributed, in part, to contaminant loadings from seabirds that use Ellasjøen, but not Øyangen, as a resting area. However, other factors, such as food web structure, organism growth rate, weight, lipid content, lake morphology, and nutrient inputs from the seabird guano, also differ between the two systems. The aim of this study is to evaluate the relative influence of these factors as explanatory variables for the higher PCB fish concentrations in Ellasjøen compared with Øyangen, using both a food web model and empirical data.

Methods

The model is based on previously developed models but parameterized for Lakes Ellasjøen and Øyangen using measured data wherever possible. The model was applied to five representative PCB congeners (PCB 105, 118, 138, 153, and 180) using measured sediment and water concentrations as input data and evaluated with previously collected food web data.

Results

Modeled concentrations are within a factor of two of measured concentrations in 60% and 40% of the cases in Lakes Ellasjøen and Øyangen, respectively, and within a factor of 10 in 100% of the cases in both lakes. In many cases, this is comparable to the variability associated with the data as well as the efficacy of the predictions of other food web model applications.

Discussion

We next used the model to quantify the relative importance of five major differences between Ellasjøen and Øyangen by replacing variables representing each of these factors in the Ellasjøen model with those from Øyangen, in separate simulations. The model predicts that the elevated PCB concentrations in Ellasjøen water and sediment account for 49%–58% of differences in modeled fish PCB concentrations between lakes. These elevated sediment and, to a lesser extent, water concentrations in Ellasjøen are due to PCB loadings from seabird guano. However, sediment–water fugacity ratios of PCBs are consistently greater in Ellasjøen compared with Øyangen, which suggests that internal lake processes also contribute to differences in sediment and water concentrations. We hypothesize that the nutrients associated with guano influence sediment–water fugacity ratios of PCBs by increasing the stock of pelagic algae. As both these algae and the guano settle, their organic carbon content is degraded faster than PCBs, which causes an extra magnification step in Ellasjøen before these detrital particles are consumed by benthic organisms, which are in turn consumed by fish. The model predicts that the remaining ~50% of the differences in PCB concentrations observed between the fish of these lakes are due to other subtle differences in their food web structures.

Conclusions

In conclusion, based on the results of a food web model, we found that the most dominant factors influencing the higher PCB fish concentrations in Lake Ellasjøen compared with Øyangen are the higher sediment and water concentrations in Ellasjøen, caused by seabird guano. Together, sediment and water are predicted to account for 49%–58% of differences in fish concentrations between lakes. Although seabird guano provides a source of nutrients to the lake, in addition to contaminants, empirical data and indirect model results suggest that nutrients are not leading to decreased bioaccumulation, in contrast to what has been observed in temperate, pelagic food webs.

Recommendations and perspectives

The results of this study emphasize the importance of considering even small differences in food web structure when comparing bioaccumulation in two lakes; although the food web structures of Ellasjøen and Øyangen differ only slightly, the model predicts that these differences account for most of the remaining ~50% of the differences in PCB fish concentrations between the two lakes. This study further demonstrates the utility of food web models as we were able to predict and tease apart the influence of various factors responsible for the elevated concentrations in the fish from Lake Ellasjøen, which would have been difficult using the field data alone.  相似文献   

14.
This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in "seafood" collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances.  相似文献   

15.
Cadmium, lead, zinc, Chromium, copper, nickel and manganese in sediments and in aquatic organisms were collected from the aquaculture pond ecosystem of the Pearl River Delta (PRD), China and analyzed to evaluate bioaccumulation and trophic transfer in food chains, as well as the potential health risk of exposure to the Hong Kong residents via dietary intake of these aquatic products. The results revealed that based on the biota–sediment accumulation factor, omnivorous fish and zooplankton accumulated more trace metals from sediment than carnivorous fish. Concentrations of seven trace metals in aquaculture pond of PRD significantly decreased with increasing trophic levels, showing that these trace metals were trophically diluted in predatory and omnivorous food chains. The hazard index values of all fish species were smaller than 1 for adults and children, indicating there was no health risk from the multiple metals via ingestion of the freshwater fish for the inhabitants.  相似文献   

16.
A procedure for the assessment of emissions of nitrogen (N) species (ammonia, nitrous oxide, nitric oxide, di-nitrogen) from the manure management system is developed, which treats N pools and flows including emissions strictly according to conservation of mass criteria. As all relevant flows in the husbandry of mammals are depicted, the methodology is considered a Tier 3 approach in IPCC terminology or a detailed methodology in UN ECE terminology. The importance of accounting for all N species is illustrated by comparing emission estimates obtained using this approach with those obtained from the application the present detailed/Tier 2 methodology.  相似文献   

17.
The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered hydrodynamic models for water volume and flow velocity conditions. The research questions were firstly focused on the definition of scenarios that could depict representative situations regarding food webs, pollution, and flow conditions in the TGR. The food webs and the abiotic site conditions in the main study area near the city of Wushan that determine the environmental preconditions for the organisms were defined. In our conceptual approach, we used the pesticide propanil as a model substance.  相似文献   

18.
Sodium monofluoroacetate (compound 1080) is one of the most potent pesticides. It is also a metabolite of many other fluorinated compounds, including anticancer agents, narcotic analgesics, pesticides or industrial chemicals. Other sources of water contamination are the atmospheric degradation of hydrofluorocarbons and hydrochlorofluorocarbons. However, there is little information available about the adverse effects of sodium fluoroacetate in aquatic organisms. Firstly, the bacterium Vibrio fischeri (decomposer), the alga Chlorella vulgaris (1st producer) and the cladoceran Daphnia magna (1st consumer) were used for the ecotoxicological evaluation of SMFA. The most sensitive models were C. vulgaris and D. magna, with a NOAEL of 0.1 and an EC50 of 0.5 mM at 72 h, respectively. According to the results after the acute exposure and due to its high biodegradation rate and low bioaccumulation potential, sodium fluoroacetate is most unlikely to produce deleterious effects to aquatic organisms. Secondly, two fish cell lines were employed to investigate the effects and mechanisms of toxicity in tissues from 2nd consumers. The hepatoma fish cell line PLHC-1 was more sensitive to SMFA than the fibroblast-like fish cell line RTG-2, being the uptake of neutral red the most sensitive bioindicator. Lysosomal function, succinate dehydrogenase and acetylcholinesterase activities were inhibited, glucose-6-phosphate dehydrogenase activity was particularly stimulated, and metallothionein and ethoxyresorufin-O-deethylase levels were not modified. Intense hydropic degeneration, macrovesicular steatosis and death mainly by necrosis but also by apoptosis were observed. Moreover, sulphydryl groups and oxidative stress could be involved in PLHC-1 cell death induced by SMFA more than changes in calcium homeostasis.  相似文献   

19.
Tolls J  van Dijk J 《Chemosphere》2002,47(10):1049-1057
Petroleum products are complex mixtures of hydrocarbons. They are important as constituents of fuels and lubricants, and as key raw materials for the chemicals industry. Since there is a potential for accidental releases to the aquatic environment, bioaccumulation of higher hydrocarbons is of concern. Here, the bioconcentration behaviour of two representative hydrocarbons, the dodecane isomers n-dodecane and 2,2,4,6,6-pentamethylheptane (PMH), was investigated in fathead minnows at concentrations in water below their maximum aqueous solubility. The concentration of n-dodecane in fish did not exceed our method limit of detection of 60 μg/kg. In contrast, PMH could be quantified in fish. No significant increase in the ratio of PMH concentrations in fish to water could be detected indicating that an exposure time of 4–10 days is sufficient to approach steady-state. For n-dodecane the upper limit of the bioconcentration factor (BCF) is estimated by dividing the method limit of detection by the exposure concentration and a value of 240 l/kg is derived. For PMH the bioconcentration factor, estimated as the average fish/water concentration ratio during the steady-state part of the experiment, ranges between 880 and 3500 l/kg. The BCFs of both compounds are small compared to their hydrophobicity. Given that both linear and branched hydrocarbons are known to be biotransformed by fish, it appears that efficient metabolism of the test compounds in fathead minnows prevents bioaccumulation.  相似文献   

20.
The influence of contaminated particles on the bioconcentration of hydrophobic chemicals by fish is dependent on the hydrophobicity of the chemicals. This has been shown for polychlorinated benzenes and biphenyls (ranging over three orders of magnitude in octan-1-ol/water partition coefficient) which are sorbed on very low organic carbon content particles. For chemicals with low to moderate hydrophobicity, the amount of the chemical which is sorbed, relative to the amount which is dissolved, determines the influence that contaminated particles have on the uptake of the chemicals by fish. In this present experiment, for lower chlorinated benzenes and biphenyls, the amount dissolved in water are high compared with the amounts which are present in the sorbed state, and the influence of contaminated particles on their uptake by fish is negligible. For more hydrophobic chemicals, which have lower aqueous solubilities, such as penta and hexachlorobenzene, and tri and tetrachlorobiphenyls, contaminated particles can have a much greater influence on the uptake by fish. If the number of contaminated particles is sufficiently high, the low aqueous solubilities, in combination with relatively high rates of desorption or dissolution, enable the particles to act as a source of the hydrophobic chemicals. For extremely hydrophobic chemicals, the rates of dissolution or desorption determine the rates of uptake of the chemical by the fish. Hence, during relatively short periods of exposure, there is no influence of contaminated particles on the bioaccumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号