首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
手性污染物环境行为的对映体差异性   总被引:4,自引:0,他引:4  
环境中手性污染物对映体选择性行为的研究历史不长,但由于手性化合物对映体生物活性的差异性,手性污染物在环境中的对映体选择性行为已愈来愈引起人们的关注。本文对近10多年来手性污染物的环境行为研究进行全面评述。  相似文献   

2.
综述了国内外环境介质中手性药物的分离分析方法以及环境行为研究进展,对比了几种主要的对映体分离方法,对手性固定相的种类及特性、分离原理、影响因素和发展趋势作了简要介绍,探讨了药物对映体在污水处理工艺和天然水环境中的降解或转化规律等环境行为,介绍了药物对映体特性在污染物源解析中的应用。  相似文献   

3.
手性化合物广泛应用于医药、农药、新材料及精细化学品合成等领域.传统的化学合成方法存在一定的局限,如对映选择性较差、耗能高、污染严重等.生物催化作为一种环境友好且高选择性的合成方法成为当代有机合成领域的研究热点.从生物催化合成机制、加氧酶的定向进化与改造、生物催化合成手性化合物的过程优化控制等方面,综述了微生物加氧酶在手...  相似文献   

4.
基于Web of Science核心合集数据库,利用VOSviewer和CiteSpace软件,对2000—2020年有关垃圾填埋场污染物的文献进行了计量分析。结果表明:(1)2000—2020年,垃圾填埋场污染物领域的发文量总体呈逐年增加态势,2015年后中国的发文量直线上升;(2)中国的机构虽然发文量多,但均篇被引频次不是很高,影响力还有待进一步提升;(3)垃圾填埋场污染物研究的热点包括城市固体废弃物及其处置过程,垃圾渗滤液或污废水中有机污染物的去除、降解,垃圾填埋场周边地表水和地下水中污染物的环境行为,无机污染物氮元素的去除,垃圾填埋场中新污染物的环境行为和去除5大类;(4)垃圾填埋场污染物主要分为重金属和有机污染物两大类,其中重金属在不同环境介质中出现的频次高于有机污染物,填埋气等气态污染物造成的环境问题也不容忽视。  相似文献   

5.
本文综述了近年来关于水环境中生物膜对污染物环境化学行为影响的研究成果,包括水环境中生物膜对污染物的吸附作用,以及生物膜不同组分对污染物的吸附作用。  相似文献   

6.
持久性有机污染物(POPs)是一类难降解的有机污染物,其环境行为很大程度上决定了其最终的环境影响.探讨了气候变化对POPs环境行为的影响,通过相关的文献和科研进展得出的结论,从气温、降水与极端气候以及由气候变化引发的生物行为变化多个角度分析了气候变化与POPs间的相互关系.最后指出,由于全球气候变化的影响无处不在,今后在针对POPs污染的研究与防治中不能忽视这一要素,理应给予这一问题足够的关注.  相似文献   

7.
邻苯二甲酸酯(PAEs)的环境行为和环境效应已成为当前环境激素类污染物研究的热点课题,介绍了PAEs的毒性危害,综述了当前不同环境样品PAEs研究的前处理技术、分析检测技术以及污染治理技术的研究情况,并指出了当前研究中存在的问题,提出了未来的研究重点。  相似文献   

8.
环境中的邻苯二甲酸酯   总被引:6,自引:0,他引:6  
本文较为系统地评述了邻苯二甲酸酯的环境行为、生态效应、环境归趋、数学模型和处理技术。指出邻苯二甲酸酯是生产量大和应用面广的人工合成有机化学品,是目前世界上全球性的一类环境有机污染物。这类化合物的低水溶度和低挥发性导致了它们的高吸附亲和性,从而使得该类化合物在固体颗粒物表面的行为对于研究它们在环境中各种过程具有十分重要的作用。  相似文献   

9.
本文综述了我国大气污染化学研究的概况。阐明了大气颗粒物(气溶胶)的表征研究,包括颗粒物的物理化学特性和环境化学行为;大气污染物的迁移、转化和归宿的规律,包括化学过程和大气化学模式的研究等。介绍了某些大气污染物的特殊分析测试方法和采样技术,对今后发展大气化学的展望和战略作了讨论。  相似文献   

10.
富碳沉积物对多环芳烃的截存及其环境意义   总被引:1,自引:0,他引:1  
沉积物是多环芳烃(PAHs)等憎水性有机污染物的蓄积库,同时它也是该类污染物的源,沉积物中污染物的吸附/解吸,控制着污染物在水环境中的行为和生态毒性.然而,沉积物并不均一,沉积物中的异质组分表现出对PAHs差异显著的吸附/解吸性能.研究表明,富碳沉积物对PAHs存在截存效应,控制着污染物的吸附/解吸过程,表现为吸附/解吸滞后、缓慢解吸和受限的生物有效性.最后,在综述沉积物中的富碳物质及截存效应机制的基础上,讨论了截存效应所带来的环境意义和启示.  相似文献   

11.
Many contaminants are chiral compounds with enantiomers that may differ markedly in environmental fate, bioavailability, and toxicity. Enantiospecific environmental fate and ecotoxicological information are lacking for many chiral contaminants. The primary objective of this investigation included an assessment of potential enantiospecific differences in sublethal standardized and behavioral responses of the model organisms Pimephales promelas (teleost) and Daphnia magna (crustacean) to the widely prescribed chiral antidepressant fluoxetine. Endpoints assessed included D. magna immobilization, reproduction, and grazing rate and P. promelas survival, growth, and feeding rate. S-Fluoxetine was found to be more toxic to sublethal standardized and behavioral endpoints in P. promelas, potentially because its primary active metabolite, S-norfluoxetine, is more potent than the same metabolite of R-fluoxetine in mammals. This was not observed for D. magna responses. This differential enantiospecific response between model organisms may have resulted from closer target homology between mammals and fish than between mammals and crustaceans. P. promelas feeding rate, an ecologically relevant and mode-of-action related response, was the most sensitive endpoint tested for R- and S-fluoxetine with 10% effect concentration (EC10) values (+/-SE) of 16.1 (+/-20.2) and 3.7 (+/-4.6) microg l(-1), respectively. Up to a 9.4-fold difference in toxicity between enantiomers was observed; P. promelas growth EC10s (+/-SE) for R- and S-fluoxetine were 132.9 (+/-21.2) and 14.1 (+/-8.1) microg l(-1), respectively. Such differences in sublethal responses to fluoxetine enantiomers suggest that enantiospecific toxicity and mode-of-action related responses that are ecologically relevant (e.g., feeding rate) should be considered in future ecological hazard and risk assessments for chiral contaminants.  相似文献   

12.
The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.  相似文献   

13.
Presently, many pharmaceuticals are listed as emerging contaminants since they are considered to be great potential threats to environmental ecosystems. These contaminants, thus, present significant research interest due to their extensive use and their physicochemical and toxicological properties. This review discusses a whole range of findings that address various aspects of the usage, occurrence, and potentially environmental risks of pharmaceuticals released from various anthropogenic sources, with emphasis on the aquatic systems in Vietnam. The published information and collected data on the usage and occurrence of antibiotics and synthetic hormone in effluents and aquatic systems of Vietnam is reported. This is followed by a potential ecological risk assessment of these pollutants. The extensive use of antibiotics and synthetic hormones in Vietnam could cause the discharge and accumulation of these contaminants in the aquatic systems and potentially poses serious risks for ecosystems. Vietnam is known to have extensively used antibiotics and synthetic hormones, so these contaminants are inevitably detected in aquatic systems. Thus, an appropriate monitoring program of these contaminants is urgently needed in order to mitigate their negative effects and protect the ecosystems.  相似文献   

14.
Fate and transport models can be used to identify and classify chemicals that have the potential to undergo long-range transport and to accumulate in remote environments. For example, the Arctic contamination potential (ACP), calculated with the help of the zonally averaged global transport model Globo-POP, is a numerical indicator of an organic chemical's potential to be transported to polar latitudes and to accumulate in the Arctic ecosystem. It is important to evaluate how robust such model predictions are and in particular to appreciate to what extent they may depend on a specific choice of environmental model input parameters. Here, we employ a recently developed graphical method based on partitioning maps to comprehensively explore the sensitivity of ACP estimates to variations in environmental parameters. Specifically, the changes in the ACP of persistent organic contaminants to changes in each environmental input parameter are plotted as a function of the two-dimensional hypothetical “chemical space” defined by two of the three equilibrium partition coefficients between air, water and octanol. Based on the patterns obtained, this chemical space is then segmented into areas of similar parameter sensitivities and superimposed with areas of high default ACP and elevated environmental bioaccumulation potential within the Arctic. Sea ice cover, latitudinal temperature gradient, and macro-diffusive atmospheric transport coefficients, and to a lesser extent precipitation rate, display the largest influence on ACP-values for persistent organic contaminants, including those that may bioaccumulate within the polar marine ecosystems. These environmental characteristics are expected to be significantly impacted by global climate change processes, highlighting the need to explore more explicitly how climate change may affect the long-range transport and accumulation behavior of persistent organic pollutants.  相似文献   

15.

Introduction  

Mediterranean rivers are characterized by a high flow variability, which is strongly influenced by the seasonal rainfall. When water scarcity periods occur, water flow, and dilution capacity of the river is reduced, increasing the potential environmental risk of pollutants. On the other hand, floods contribute to remobilization of pollutants from sediments. Contamination levels in Mediterranean rivers are frequently higher than in other European river basins, including pollution by pharmaceutical residues. Little attention has been paid to the transport behavior of emerging contaminants in surface waters once they are discharged from WWTP into a river. In this context, this work aimed to relate presence and fate of emerging contaminants with hydrological conditions of a typical Mediterranean River (Llobregat, NE Spain).  相似文献   

16.
Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L?1, respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.  相似文献   

17.

Background, aim, and scope  

Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters.  相似文献   

18.
A mathematical model for the transport of hydrophobic organic contaminants in an aquifer under simplistic riverbank filtration conditions is developed. The model considers a situation where contaminants are present together with dissolved organic matter (DOM) and bacteria. The aquifer is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid phase. An equilibrium approach is used to describe the interactions of contaminants with DOM, bacteria, and solid matrix. The model is composed of bacterial transport equation and contaminant transport equation. Numerical simulations are performed to examine the contaminant transport behavior in the presence of DOM and bacteria. The simulation results illustrate that contaminant transport is enhanced markedly in the presence of DOM and bacteria, and the impact of DOM on contaminant mobility is greater than that of bacteria under examined conditions. Sensitivity analysis demonstrates that the model is sensitive to changes of three lumped parameters: K+1 (total affinity of stationary solid phase to contaminants), K+2 (total affinity of DOM to contaminants), and K+3 (total affinity of bacteria to contaminants). In a situation where contaminants exist simultaneously with DOM and bacteria, contaminant transport is mainly affected by a ratio of K+1/K+2/K+3, which can vary with changes of equilibrium distribution coefficient of contaminants and/or colloidal concentrations. In riverbank filtration, the influence of DOM and bacteria on the transport behavior of contaminants should be accounted to accurately predict the contaminant mobility.  相似文献   

19.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

20.
《Environmental Forensics》2013,14(3):161-165
The distribution of aromatic contaminants between environmental solids and water solution reflects both absorption by the organic matrix (organic carbon, OC) and adsorption to black carbon (BC). In many instances, adsorption to BC dominates the interaction between aromatic contaminants and environmental solids. This holds especially true for the pyrogenically produced PAHs and PCDD/Fs, but also for the industrially produced PCBs and PCNs. In the future, research will need to surface-normalize the adsorption onto BC surfaces. One of the key questions to be addressed is the relative distribution and availability of contaminants associated with OC and BC fractions in environmental solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号