首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Since the early eighties air pollution by SO2 and Pb and, to a lesser degree by NOx and NH3, have been significantly reduced in Europe. This was done in part for the protection of forest ecosystems. The reductions are reflected in the pollutant impacts and inputs and have been verified through the bioindicator Norway spruce. In contrast, ozone concentrations increased at most of the evaluated measuring locations and trends were calculated based on the results of about 100 stations in Austria and Germany. Despite reduced emissions, large parts of the forest ecosystems are still affected by air-pollution impacts. Negative effects can be assessed using different legal standards and Critical Levels and Critical Loads, respectively: The legal standard for the evaluation of SO2 impact, as used in Austria, is well suited. The provisional European Critical Level for ozone, the AOT40 must, in order to be a meaningful criterion for field applications, be further refined. Continuing the Critical Load concept, the spatial risk of acid depositions in areas of high geomorphic variability were evaluated using the new parameter of 'critical soil depth'. With the help of the newly defined 'lead accumulation index', the accumulation of Pb from air pollution could be evaluated. Air-pollution inputs and the spatial acidification risk is directly related to altitude. Up to altitudes of 1000 m and 1100 m, SO2 impact and acid depositions, respectively were indicated and elevated ozone doses and Pb inputs were observed in the sensitive sub-alpine areas. These results underline the necessity for increased protection of mountain forest ecosystems, among others through a further reduction of emissions or forest-related strategies.  相似文献   

2.
The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems.  相似文献   

3.
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.  相似文献   

4.
Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development.  相似文献   

5.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   

6.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

7.
Major land use changes such as deforestation and restoration influence water resources in agriculture–forest landscapes. Changes are observed in water flows, groundwater infiltration, water quality and rainfall. Interdisciplinary water–forest research has unravelled biophysical parts of the interplay that influences forest and water resources. In this Perspective paper, we propose an expanded interdisciplinary research approach to study water and policies in agriculture–forest frontiers. The approach differs in four important aspects from previous ones: (i) a conceptual ‘frontier’ understanding; an analytical focus on (ii) agriculture and (iii) policy–water linkages; (iv) empirical attention to northern and southern countries. The approach is put into practice with the “Pendulum” framework, with interventions and the agriculture–forest frontier oscillating over time between exploitation and restoration. Through the approach, a better understanding will be provided on the dynamic interplay of water and policies in oscillating agriculture–forest frontiers, with changing outcomes for people and environment.  相似文献   

8.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   

9.
Four different methods of epiphytic lichen mapping were used for the assessment of air quality in the region under the influence of the Sostanj Thermal Power Plant (Salek Valley, Slovenia). Three methods were based on the presence of different lichen species (VDI, EU and ICP-Forest), the fourth on a frequency and coverage assessment of different growth forms of epiphytic lichens, e.g. crustose, foliose and fruticose (SI). A comparison of the results from the assessment of air quality between forest sites (ICP-Forest, SI) and open areas (VDI, EU and SI), obtained by the different methods of epiphytic lichen mapping, is presented in the contribution. Data showed that lichen species richness is worse in forest sites in comparison with open areas. From the data obtained it can be concluded that epiphytic lichen mapping in open areas is a better method for the assessment of air pollution in a given area than mapping in forest sites. The species-based methods in open areas are more powerful and useful for air quality assessment in polluted research areas than the SI and ICP-Forest methods.  相似文献   

10.
Over the last decades much of the work on the impact of air pollution on forests in Europe has concentrated on central and northern countries. The southern part of Europe has received far less attention, although air pollutants-especially the photochemical ones-can reach concentrations likely to have adverse effects on forest vegetation. Although international forest condition surveys present serious problems where data consistency is concerned, they reveal considerable year-by-year species-specific fluctuations rather than a large-scale forest decline. Cases of obvious decline related to environmental factors are well circumscribed: (1) the deterioration of some coastal forests due to the action of polluted seaspray; (2) the deterioration of reforestation projects, especially conifers, mainly due to the poor ecological compatibility between species and site; and (3) the decline of deciduous oaks in southern Italy and of evergreen oaks in the Iberian peninsula apparently due to the interaction of climate stresses and pests and diseases. However, besides obvious deterioration, changes in environmental factors can provoke situations of more subtle stress. The most sensitive stands are Mediterranean conifer forests and mesophile forests of the Mediterranean-montane plane growing at the edges of the natural ecological distribution. Evergreen sclerophyllous forests appear less sensitive to variations in climatic parameters, since they can adapt quite well to both drought and the action of UV-B rays. Several experiments were carried out to test the sensitivity of Mediterranean forest species to air pollutants. Most of those experiments used seedlings of different species treated with pollutant concentrations too high to be realistic, so it is difficult to derive adequate information on the response of adult trees in field conditions. Ozone has been proved to cause foliar injury in a variety of native forest species in different Southern European countries, while the effects of other pollutants (e.g. nitrogen, sulphur, acidic deposition) are less obvious and likely to be very localized. In the case of ozone, visible symptoms were almost completely missed by large-scale surveys and-at the same time-non-visible symptoms are suspected to be even more widespread than the visible ones. Owing to this and to the complex relationships existing between species sensitivity, ozone exposure and doses, length of the vegetative periods, influence of climatic and edaphic condition on the tree's response, the impacted areas are yet to be identified. Therefore, the large-scale impact of air pollutants on the forests of Southern Europe remains largely unknown, until more specific investigations are carried out.  相似文献   

11.
Air pollution and forest health: toward new monitoring concepts   总被引:4,自引:0,他引:4  
It is estimated that 49% of forests (17 million km(2)) will be exposed to damaging concentrations of tropospheric O(3) by 2100. Global forest area at risk from S deposition may reach 5.9 million km(2) by 2050, despite SO(2) emission reductions of 48% in North America and 25% in Europe. Although SO(2) levels have decreased, emissions of NO(x) are little changed, or have increased slightly. In some regions, the molar SO(4)/NO(3) ratio in precipitation has switched from 2/1 to near 1/1 during the past two decades. Coincidentally, pattern shifts in precipitation and temperature are evident. A number of reports suggest that forests are being affected by air pollution. Yet, the extent to which such effects occur is uncertain, despite the efforts dedicated to monitoring forests. Routine monitoring programmes provide a huge amount of data. Yet in many cases, these data do not fit the conceptual and statistical requirements for detecting status and trends of forest health, nor for cause-effect research. There is a clear need for a re-thinking of monitoring strategies.  相似文献   

12.
Data from multiple satellite remote sensors are integrated with ground measurements and meteorological data to study the impact of Greek forest fires in August 2007 on the air quality in Athens. Two pollution episodes were identified by ground PM10 measurements between August 23 and September 4. In the first episode, Evia and Peloponnese fires contributed substantially to the air pollution levels in Athens. In the second episode, transport of industrial pollution from Italy and Western Europe as well as forest fires in Albania contributed substantially to the air pollution levels in Athens. Local air pollution sources also contributed to the observed particle levels during these episodes. Satellite data provide valuable insights into the spatial distribution of particle concentrations, thus they can be used identify pollution sources. In spite of a few weaknesses in current satellite data products identified in this analysis, combining satellite aerosol remote sensing data with trajectory models and ground measurements is a powerful tool to study intensive particle pollution events such as forest fires.  相似文献   

13.
Background, aim and scope  Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Results  Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. Discussion  The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. Conclusions and perspectives  More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.  相似文献   

14.
Within the framework of the project "Effects of forest health on biodiversity with emphasis on air pollution in the Carpathian Mountains" 26 permanent study sites were established in the vicinity of the ozone monitoring sites. The study sites were located on the NW-SE transect through the Western (12 sites), Eastern (11 sites) and Southern (3 sites) Carpathians in forest ecosystems typical of each area. Some of the forest monitoring sites were located in national parks, biosphere reserves and areas of protected landscape. Each permanent site of 0.7 ha area consisted of 5 small 500m(2) circular plots, arranged in the form of a cross, i.e. four placed on the cardinal points (N, E, S, W) and one in the center. Phytosociological records were done twice during the 1998 growing season using the Braun-Blanquet's method. The study sites represented various types of forest: Picea abies stands (8), beech (Fagus sylvatica) stands (10), fir (Abies alba) stands (2) and mixed beech-fir, spruce-fir and beech-spruce stands (6). Age of most stands was 80-100 years. Degree of crown damage varied greatly between sites, a percentage of damaged trees decrease in Carpathians from West to East. It corresponds well with the O(3) level in these areas. Typical damage by O(3) in herb layer species in several Carpathian sites were found. Land-use map for the entire Carpathian Mountains and two detailed land use maps for Tatras (Western Carpathians) and Retezat (Southern Carpathians) are presented. A little more than half of the Carpathian territory is forested. The most densely forested are Eastern Carpathians, while the most sparsely Western Carpathians. Arable lands occupy 22.6% of the Carpathians, pastures and meadows 6.2%, water bodies 1.9%, and build up areas several percent. In the highest elevation of the Carpathians alpine meadows (11.3%) and rocks (3.5%) are distributed.  相似文献   

15.
In eastern Spain, studies combining the tracking and meso-scale circulations of air pollutants with the evaluation of their effects on plants have been undertaken since 1994. Meso-scale processes are very important from the point of view of how and where forest ecosystems are affected by point sources and regional air pollution in the Mediterranean area. The first results of these field surveys show that in 1994, 1995 and 1996, the distribution pattern of ozone visual injury (chlorotic mottle) in Pinus halepensis correlated with the penetration of pollutants transported by the sea-breeze into coastal valleys of Castellón (eastern Spain). In this tree species, longer needles are associated with higher chlorotic mottle, and ozone injury seems to be among the factors affecting needle retention and crown transparency.  相似文献   

16.
This paper presents an example of how air pollution models can be used together with energy system models to study the impacts of climate change mitigation strategies on air pollution. As many mitigation measures of greenhouse gases (GHGs) affect the use of fossil fuels in energy production, they can have important side-effects on other air pollution problems. This paper studies on a national scale the impacts of the planned GHG reduction measures on multiple air pollution problems in Finland, concentrating on acidification of forest soils and lakes, tropospheric ozone levels harmful to humans and vegetation and on emissions of fine particles. The air pollutant emission scenarios with the alternative energy choices are calculated for about 200 large point sources, assuming the present emission limit legislation. Disperse emissions are treated at municipality level. The analysis extends to the year 2020. The implementation of the Kyoto protocol in Finland would induce notable reductions of multiple air pollutant emissions and related environmental impacts. A 6–11% reduction in ecosystems threatened by acidification in Southern and Central Finland would be achieved with the Finnish Climate Strategy alone. Substantial improvement in ozone levels would be reached in all scenarios compared to the current situation. The measures of the Climate Strategy could reduce the harmful ozone levels by a further 3%. The measures of the Climate Strategy would not significantly affect the primary particulate emissions in the future because the emissions from large power plants are already effectively controlled. Contrary to the fuel choices of the large units, expanded use of small-scale wood combustion can result in considerable increases of both fine particulate and VOC emissions.  相似文献   

17.
The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals.  相似文献   

18.
Protecting water quality in forested regions is increasingly important as pressures from land-use, long-range transport of air pollutants, and climate change intensify. Maintaining forest industry without jeopardizing sustainability of surface water quality therefore requires new tools and approaches. Here, we show how forest management can be optimized by incorporating landscape sensitivity and hydrological connectivity into a framework that promotes the protection of water quality. We discuss how this approach can be operationalized into a hydromapping tool to support forestry operations that minimize water quality impacts. We specifically focus on how hydromapping can be used to support three fundamental aspects of land management planning including how to (i) locate areas where different forestry practices can be conducted with minimal water quality impact; (ii) guide the off-road driving of forestry machines to minimize soil damage; and (iii) optimize the design of riparian buffer zones. While this work has a boreal perspective, these concepts and approaches have broad-scale applicability.  相似文献   

19.
Samples of bone, teeth and antlers of 123 wild, forest reindeer (Rangifer tarandus fennica) shot in North Karelia and in the Archangelsk region from 1986 to 1990 were investigated with regard to heavy metal and sulphur content. The samples of bone contained the highest mean levels of cadmium and lead, and the antlers contained the lowest mean heavy-metal concentrations. No differences in the sulphur content of different tissues were found. These tissues give reliable and sensitive indications of industrial pollution in the forest ecosystems.  相似文献   

20.
The term 'Waldsterben' was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe, defined here as consisting of Germany, Switzerland, southeastern France (Alsace), the Czech Republic, northern Italy and Austria. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany, such as the Fichtelgebirge. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past; the reasons for this are uncertain, although increases in forest area have not substantially contributed to the observed trends. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms 'Waldsterben' (forest deaths) and 'neuartige Waldsch?den' (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead, different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree species within a forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号