首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

2.
Particulate pollution has been clearly linked with adverse health impacts from open fire cookstoves, and indoor air concentrations are frequently used as a proxy for exposures in health studies. Implicit are the assumptions that the size distributions for the open fire and improved stove are not significantly different, and that the relationship between indoor concentrations and personal exposures is the same between stoves. To evaluate the impact of these assumptions size distributions of particulate matter in indoor air were measured with the Sioutas cascade impactor in homes using open fires and improved Patsari stoves in a rural Purepecha community in Michoacan, Mexico. On average indoor concentrations of particles less than 0.25 μm were 72% reduced in homes with improved Patsari stoves, reflecting a reduced contribution of this size fraction to PM2.5 mass concentrations from 68% to 48%. As a result the mass median diameter of indoor PM2.5 particulate matter was increased by 29% with the Patsari improved stove compared to the open fire (from 0.42 μm to 0.59 μm, respectively). Personal PM2.5 exposure concentrations for women in homes using open fires were approximately 61% of indoor concentration levels (156 μg m?3 and 257 μg m?3 respectively). In contrast personal exposure concentrations were 77% times indoor air concentration levels for women in homes using improved Patsari stoves (78 μg m?3and 101 μg m?3 respectively). Thus, if indoor air concentrations are used in health and epidemiologic studies significant bias may result if the shift in size distribution and the change in relationship between indoor air concentrations and personal exposure concentrations are not accounted for between different stove types.  相似文献   

3.
During August, 1982 and January and February, 1983, General Motors Research Laboratories operated air monitoring sites on the Atlantic Coast near Lewes, Delaware and 1250 km to the east on the southwest coast of Bermuda. The overall purpose of this project was to study the transformations of the principal acid precipitation precursors, NO x and SO x species, as they transport under conditions not complicated by emissions from local sources. In this paper, the measurements of gas and particulate species from Lewes are described and the composition and sources of sulfate aerosol, which is the most important haze-producing species, are investigated.

On the average, the total suspended particulate (TSP) concentration was 27.9 μg/m3 while the PM10 (mass of particles with a diameter less than or equal to 10 μm) concentration was 22.0 μg/m3 or 79 percent of the TSP. The PM10 consisted of 6.1 μg/m3 of coarse particles (CPM, diameter = 2.5 ? 10μm) and 15.9 μg/m3 of fine particles (FPM, diameter < 2.5 μm).

On a mass basis the most important constituents of the fine particulate fraction were sulfate compounds, 50 percent, and organic compounds, 30 percent. The mean light extinction coefficient corresponds to a visual range of 18-20 km. Most of the extinction can be attributed to the sulfate (60 percent) and organic carbon (13 percent). Particle size measurements show that the mass median aerodynamic diameter for both species is 0.43 μm. This is a typical size for a hydrated sulfate aerosol. For carbon, however, this is a larger size than previously reported and results in a more efficient light scattering aerosol. Principal component analyses indicate that coal combustion emissions from the midwestern U.S. are the most significant source of sulfate in Lewes during the summer and winter.  相似文献   

4.
In order to investigate the chemical characteristics of atmospheric aerosol measured during a severe winter haze event, 12-hr PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples were collected at an urban site in Ulaanbaatar, Mongolia, from January 9 to February 17, 2008. On average, 12-hr PM2.5 mass concentration was 105.1 ± 34.9 μg/m3. Low PM2.5 mass concentrations were measured when low pressure developed over central Mongolia. The 12-hr average organic mass by carbon (OMC) varied from 6.4 to 132.3 μg/m3, with a mean of 54.9 ± 25.4 μg/m3, whereas elemental carbon (EC) concentration ranged from 0.1 to 3.6 μgC/m3, with a mean of 1.5 ± 0.8 μgC/m3. Ammonium sulfate was found to be the most abundant water-soluble ionic component in Ulaanbaatar during the sampling period, with an average concentration of 11.3 ± 5.0 μg/m3. In order to characterize the effect of air mass pathway on fine particulate matter characteristics, 5-day back-trajectory analysis was conducted, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The haze level was classified into three categories, based on the 5-day air mass back trajectories, as Stagnant (ST), Continental (CT), and Low Pressure (LP) cases. PM2.5 mass concentration during the Stagnant condition was approximately 2.5 times higher than that during the Low Pressure condition, mainly due to increased pollutant concentration of OMC and secondary ammonium sulfate.

Implications: Mongolia is experiencing rapid rates of urbanization similar to other Asian countries, resulting in air pollution problems by the growing number of automobiles and industrialization. Ulaanbaatar, capital of Mongolia, is inherently vulnerable to air pollution because of its emission sources, topography, and meteorological characteristics. Very limited measurements on chemical characteristics of particulate matter have been carried out in Ulaanbaatar, Mongolia.  相似文献   

5.
Calculation of smoke plume opacity from the properties of the particulate emission is facilitated with the use of a parameter K (specific particulate volume cm3/m3/extinction coefficient m?1) computed from theory. Graphs of K vs. the geometric mass mean particle radius at geometric standard deviations from 1 (monodisperse) to 10 are presented for particle refractive indices of 1.96–0.66i (carbon), 2.80–0.02i, 1.33 (water) and 1.50 at a wavelength of light of 550 nm. Experimental data of K for various sources are reported. Application to the estimation of the Ringelmann number is discussed and illustrated with an example.  相似文献   

6.
Particulate mass concentration, particle size distribution, and particle chemical composition measurements have been conducted on the gases exhausting from a chromic acid anodizing process tank. Particle mass concentrations in the 200 to 20,000 μg/m3 range were measured using open-faced filters (47 mm diameter) adjacent to the process tank liquid and with closed filters (90 mm diameter) in the exhaust duct. Particle size distributions, measured using University of Washington Mark 3 and Mark 20 Cascade Impactors, showed the particle aerodynamic mass median diameter was about 3 microns. Chemical analysis of the particle samples obtained by the Modified EPA Method 5 sampling train, the Mark 20 UW Cascade Impactors, and by the 47 mm and 90 mm diameter filters showed Cr+6 concentrations in the 20 to 1,500 μg/m3 range with over 99 percent of the chromium in particles larger than 1.0 microns diameter. An integrating nephelometer was used to measure the light scattering coefficient of the exhaust gases upstream of the wet scrubber. The light scattering coefficient increased by a factor of about 2–3 over the background level during the 40 minute time period while a part was being anodized. The bscat values ranged from 3 × 10?5 to 3 × 10?4 meters?1 for the aerosol particles less than about 6 microns aerodynamic diameter.  相似文献   

7.
This paper examines the inter-suburb dispersion of particulate air pollution in Christchurch, New Zealand, during a wintertime particulate pollution episode. The dispersion is simulated using the RAMS/CALMET/CALPUFF modelling system, with data from a detailed emissions inventory of home heating, motor vehicles and industry. During the period 27 July–1 August 1995, peak 1 h and 24 h PM10 concentrations of 368 and 107 μg m−3, respectively, were observed. Peak concentrations occurred at night, when particulate emissions from wood- and coal-burning domestic heating appliances were at a maximum and emitted into a stable boundary layer. The model is generally able to reproduce the observed PM10 time series recorded at surface monitors located throughout the urban area. For this simulation, the fractional gross error ranges between 0.69 and 0.99, and the fractional bias ranges between −0.17 and 0.30. Strong horizontal concentration gradients of 100 μg m−3 km−1, both in the observational record and model predictions, are apparent. Three emission reduction options, designed to reduce the severity of particulate pollution episodes in Christchurch, are simulated. When both domestic open-hearth fires and all coal burning are removed, the 24 h average peak concentration is reduced by 55%. The number of guideline exceedences of PM10 in the modelled period is reduced from five to one. Removing open-hearth fires results in 42% reduction in PM10 concentration, resulting in three exceedences of the guideline, and removing coal-burning fires yields a 32% reduction in PM10, resulting in four exceedences of the guideline.  相似文献   

8.
Particulate emission factors for two wood stove models have been determined for two types of fuel and a range of operating conditions. The emission factors range from 1 g/kg (fuel) to 24 g/kg. A model is presented which represents the emission factor as a simple function of the ratio of fuel load to combustion rate, or the length of time between refueling. This model is felt to be appropriate for evaluating the impact of wood-based residential space heating on ambient air concentrations of particulate matter If certain assumptions can be made about stove operating conditions. An application of the emission factor model to a typical community suggests that the contribution of wood stoves to ambient particulate levels might reach 100 μg/m3 if the entire heating load were carried by wood.

Preliminary analyses of the particulate matter Indicate that benzene extractables range from 42% of the total particulate mass at short refuel times to 67% at longer refuel times. About 45% of the mass of benzene extractables appeared in the neutral fraction of acid base extractions. Polycyclic aromatic hydrocarbons are expected to be included in this neutral fraction.  相似文献   

9.
Abstract

The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 μm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45 ± 0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02 ± 0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (σa). The high correlation that has been found between these variables indicates that σa is a good indicator of the degree of contamination of urbanized areas.

The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.  相似文献   

10.
Abstract

Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24‐hr average PM2.5 concentrations ranging from 6 to 38 µg/m3 were measured during the fires, compared with levels of 2–5 µg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was <3 µg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63–88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58–100% of the concentrations measured outdoors.  相似文献   

11.
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153?±?33 μg/m3, and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32–3.2-μm range, and the PM concentration increased significantly in the range of 0.32–3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34–48 % of TSP mass. High concentrations of ammonia (12.9–49 μg/m3) and SO2 (2.6–27 μg/m3) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18–3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20 % higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.  相似文献   

12.
Stable isotopic tracers were used in Roanoke, Virginia, to tag particulate emissions from diesel trucks and residential oil furnaces, two sources of soot and PAHs which cannot be differentiated on the basis of known constituents. Approximately 1.6 g of enriched 149Sm were used to tag 264 m3 of diesel fuel burned by the city bus and truck fleets; 0.39 g of 150Sm were used to tag 106 m3 of residential heating oil. Picogram amounts of the tracers were determined simultaneously by thermal-ionization mass spectrometry in fine particles collected within the city at signal-to-noise ratios as large as 6000. These results demonstrate the feasibility of tracing particles from multiple combustion sources with stable, separated isotopes.  相似文献   

13.
Five years (1969-1973) of sulfate and nitrate fractions were analyzed from high-volume particulate samples at 8 stations in the San Francisco Bay Area. These particulate data have been compared with simultaneous SO2 and NOx gas data and emission inventory data. On an annual basis, the sulfate and nitrate particulates closely track the emission inventory data, while the gas data vary more widely in response to local sources and to meteorological factors. The area-wide five year mean for sulfates is 2.68 µ/m3, only slightly above the remote nonurban sulfate background level. However, the similar five year nitrate mean of 2.78 µ/m3 is well above the national urban average. On isolated occasions, when extreme cold required "in-terruptible" sources to switch from natural gas to fuel oil, both sulfate and nitrate fractions showed 24 hour values in excess of 20 µ/m3.  相似文献   

14.
Considerable interest is currently directed toward atmospheric visibility and its relationship to particle size and mass concentration. Previous work has been limited to heavily polluted urban areas, and visibility studies have not included particle size characterization. An air sampling program was carried out in a nonurban, low pollution area to relate: (a) total particulate mass concentration measured with a high-volume sampler, (b) particulate mass size distribution measured with aerodynamic size selective samplers, and (c) visual range measured by the integrating nephelometer. For low suspended particulate mass concentrations, the following relationship was defined between visual range (Lv) and mass concentration (M ? μg/m3):  相似文献   

15.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

16.
This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle’s fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM1.0). The study found that the average PM1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m?3, while PM2.5 and PM10 concentration averages were approximately 19 μg m?3 and 37 μg m?3, respectively. It was also observed that average hourly concentration trends of PM1.0 and PM2.5 followed a “μ-shaped” pattern during transit hours.Experimental analyses revealed that the in-vehicle PM1.0 mass concentrations were higher inside diesel-fueled buses (10.0–71.0 μg m?3 with a mean of 31.8 μg m?3) as compared to biodiesel buses (3.3–33.5 μg m?3 with a mean of 15.3 μg m?3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM1.0 mass concentrations at the back of bus compartment (5.7–39.1 μg m?3 with a mean of 28.3 μg m?3) were higher than the concentrations in the front (5.7–25.9 μg m?3 with a mean of 21.9 μg m?3), and the mass concentrations inside the bus compartment were generally 30–70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m?3 to 243 μg m?3, with a median of 11.6 μg m?3.Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.  相似文献   

17.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   

18.
For continuous monitoring of atmospheric visibility in the city of Kwangju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwangju, Korea. At the transmitter site a nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. Unusually high number of Yellow Sand events had occurred in the Northeast Asia during the spring of 2000. Visibility in Kwangju under such conditions was greatly impaired over large area for a few days. In order to investigate the effects of Yellow Sand on visibility impairment, chemical and elemental analyses of aerosol samples were performed along with the optical measurement of visibility. Hourly averaged visual range decreased from 61.7 to 1.9 km when hourly averaged concentration of PM10 varied from 32.9 to 601.8 μg/m3 during Yellow Sand periods. Fine particulate (<2.5 μm) concentrations were relatively lower than coarse particulate matters. Results of the data analyses show that mineral dusts originated from continental sources were simultaneously transported along with anthropogenic sulfate aerosols and marine aerosols. Total light extinction coefficient, bext, proposed by the IMPROVE network showed poor correlation with bext measured by transmissometer. Coarse mass scattering efficiency was classified into three categories; ENHSOc, Emineral, and Esea-salt, which were determined as ammonium sulfate combined with nss-sulfate of 1.0, sea-salt of 0.4, and mineral of 0.77 m2/g, respectively. Mass fraction of NHSOc, sea-salt, and mineral dust was 0.20, 0.14, and 0.66, respectively.  相似文献   

19.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   

20.
ABSTRACT

At a variety of Canadian monitoring sites, carbonaceous compounds were estimated to account for an average of 50% of fine particle mass. These estimates were determined by subtracting the total fine particle mass associated with inorganic compounds from the total fine mass determined gravimetrically. This approach, which yields an upper limit estimate of the total amount of carbon-related mass was necessary since particulate carbon was not measured in the Canadian National Air Pollution Surveillance (NAPS) network. In this paper, total carbon estimates are evaluated against organic and elemental carbon measurements at locations in the Greater Vancouver area and Toronto. In addition, particle nitrate measurements at seven Canadian locations are used to determine the importance of nitrate relative to total mass and to examine the sampling artifacts due to the loss of particle nitrate from Teflon filters used in the NAPS di-chotomous samplers.

Measurements of organic and elemental carbon indicated that the total carbon estimation approach provides representative estimates of the average contribution by carbonaceous material to the total fine and coarse mass. The average total carbon among all Vancouver area measurements (N = 225) was 4.28 μg m-3, while the estimated value was 4.34 μg m-3. There was a larger discrepancy between Toronto total carbon measurements (12.1 μg m-3) and estimates (8.8 μg m-3), which is attributed in part to sampling of particles above 10 mm in diameter. However, the R2 relating the measurements and estimates was about 0.71 for both areas. Linear regression slopes of 0.98 for Vancouver and 0.78 for Toronto (nonsignificant intercepts) indicate little bias in the Vancouver estimates, but a tendency for underestimation as the observed total carbon concentration increased in Toronto.

Annually, nitrate was responsible for 17% and 12% of the fine mass in the Vancouver area and Ontario, respectively. In contrast, at two rural locations in southern Quebec and Nova Scotia, only 6% of fine mass was associated with nitrate. Due to filter losses, nitrate concentrations determined through the NAPS dichot sampling were much lower than actual concentrations (0.44 μg m-3 vs. 2.63 μg m-3). As a result of these losses (attributed mostly to loss during laboratory storage), previous total carbon estimates for the Canadian NAPS sites were likely to have been overestimated on average by about 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号