首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved organic matter (DOM) in soil solution is considered to interact with herbicides enhancing their mobility and promoting subsequent leaching. Batch experiments were conducted to test if free and DOM-bound herbicides can be separated by a DOM-flocculation technique with Cu as a coagulant. DOM was extracted from the H and A horizons of two soils (Terric Histosol, Cumuli-Calcaric Cambisol) and from the O horizon of a forest soil (Humic Cambisol). DOM-solutions (100 mL) were fortified with the herbicides terbuthylazine and pendimethalin (100 μg active ingredient each) and equilibrated for 14 hours. After DOM-flocculation with Cu (addition of 0,5 mM CuCl2) herbicide recovery was determined in the supernatant solutions and in the precipitate of Humic Cambisol-DOM, respectively. Recovery of the herbicides from pure water was 85–99% and was not influenced by the addition of Cu. At low pH (4,8–5,3) DOM-flocculation of different DOM-extracts was insufficient and varied in a range of 18 – 90%. Herbicide recovery from DOM-solutions decreased moderately for terbuthylazine (60–90%) and strongly for pendimethalin (5 – 30%). In general, the addition of Cu caused no further reduction of herbicide recovery from supernatant solutions, except for Humic Cambisol-DOM. The effects of Cu-addition were most evident for pendimethalin (strongly reduced concentration in the supernatant solutions) and were considered to be caused by a flocculation of DOM-bound moieties. Flocculation of Humic Cambisol-DOM increased from 18 – 24% at pH 5 to > 95% at pH 8. However, at this pH the formation of Cu(OH)2 as a sorbing subcomponent of the flocculated matter lead to an overestimation of DOM-bound pendimethalin. Calculating this side effect 6% of pendimethalin added was DOM-bound. Only traces of terbuthylazine (< 1%) were found in the solid matter of flocculated Humic Cambisol-DOM. To sum up, the new approach to separate freely dissolved herbicides from DOM-bound moieties not fully corresponded to our expectations. DOM-flocculation was found to depend strongly on pH-environment influencing not only DOM-herbicide interactions but also the clear separation of DOM-bound herbicides from herbicides in solutions.  相似文献   

2.
J. P. Sherry  A. Borgmann 《Chemosphere》1993,26(12):2173-2184
Environmental immunoassays can help lower the operating costs and improve the effectiveness of residue laboratories. The present study assesses the ability of a commercially available enzyme immunoassay (EIA) to detect triazine herbicides in water. The tube based EIA could detect atrazine in lake and river water with detection limits of 62 pg/mL and 180 pg/mL respectively. The assay's ability to quantify atrazine in a set of 124 water samples taken from many parts of Canada was compared with a reference method that used gas chromatographic separation combined with a nitrogen phosphorous detector (GC-NPD) (R=0.919). A 71 % reduction in analytical load was achieved at a threshold concentration of 1 ng/mL. There were 2.4 % false negative and 0.8 % false positive results associated with that load reduction. The variability of the assay control parameters was generally within two standard deviations of the mean response for 65 assays. The EIA for atrazine is recommended for use as a screening technique and as an inexpensive way to monitor triazine levels in waters that are known to be contaminated with those herbicides.  相似文献   

3.
Sulfonylurea herbicides are widely used in crop production on the Canadian prairies and a portion of these herbicides applied to cropland are inevitably lost to surrounding aquatic ecosystems. Little is known regarding the presence of sulfonylurea herbicides in wetlands located amongst cropland. This paper describes a new analytical method for the extraction and the determination of seven sulfonylurea herbicides (thifensulfuron-methyl, tribenuron-methyl, ethametsulfuron-methyl, metsulfuron-methyl, rimsulfuron, nicosulfuron and sulfosulfuron) in wetland sediment. The method provided > 85% analyte recovery from fortified sediment for six of the seven sulfonylurea herbicides with a limit of quantification (LOQ) of 1.0 μ g kg? 1. Tribenuron-methyl had significantly lower recovery compared to the other six sulfonylurea herbicides (LOQ = 2 μ g kg? 1). Mean recovery standard deviations were < 10%. This methodology was used to quantify sulfonylurea herbicide residues in sediment samples collected from prairie wetlands situated within the agricultural landscape of Saskatchewan and Manitoba, Canada. This is the first-known detection of sulfonylurea herbicide residues in prairie wetland sediments. Ethametsulfuron-methyl, sulfosulfuron and metsulfuron-methyl, the three most environmentally persistent of the seven sulfonylurea herbicides monitored in the surveillance component of this study, were most frequently detected in wetland sediment with mean concentrations ranging from 1.2 to 10 μ g kg? 1.  相似文献   

4.
PCDD/Fs are hydrophobic organic substances and strongly sorbing to soil particles. Once adsorbed to soil particles they are believed to be virtually immobile. However, research in the last decades confirmed that strong sorbing contaminants may reach the groundwater via colloid-facilitated transport. This pathway has not been investigated before in Vietnam. Ma Da area, 100 km north of Ho Chi Minh City, was repeatedly sprayed during the Vietnam War (1962–1971) with herbicides like Agent Orange containing, beside others, the teratogenic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 11 surface soil samples and 12 water samples were collected in Ma Da area for analysis of PCDD/Fs in solids. Soil TCDD concentrations ranged from 1–41 ppt with a mean of 8.8 ppt and a mean I-TEQ of 9.7 ppt. Two surface water samples showed colloid bound TCDD (7 and 19 ppt). Groundwater samples showed elevated colloid bound PCDD concentrations (mean 770 ng/kg), mainly octachlorodibenzo-p-dioxin. Groundwater colloids separated by filtration did not show any TCDD. The results support that TCDD/Fs can be relocated from the top soil to the groundwater by colloidal pathway. They did not provide evidence that the dioxins bound to groundwater colloids are leftovers from the Second Indochinese War. However, this study reinforces that the colloidal transport pathway has to be included investigating the relocation of strong sorbing organic contaminants.  相似文献   

5.
Concentrations of mono- (MBT), di- (DBT), and tri-(TBT) butyltin compounds were measured in eggs, liver, and muscle of nine species of fish from four regions of the Baltic Sea - the Firth of Vistula, the Gulf of Gdańsk, Puck Bay, and the mouth of the Vistula River. The overall concentration ranges among all the fish sampled from the four sites were: < 7 to 79 ng/g for MBT, 6 to 1100 ng/g for DBT, 7 to 3600 ng/g for TBT, and 16 to 4800 ng/g for total BTs, on a wet wt basis. The highest concentration of total BTs was found in herring liver from the Firth of Vistula (4800 ng/g, wet wt) and in roach muscle from Puck Bay (3300 ng/g, wet wt), while the least concentration was found in burbot eggs and liver from the Vistula River (39 and 32 ng/g, wet wt, respectively). TBT was the major form of BTs present in most samples analyzed. Sediment samples collected from shipyards in the Gulf of Gdańsk contained butyltin concentrations ranging from 1.2 to 46 μg/g (dry wt) for MBT, 2.0 to 42 μg/g for DBT, and 2.6 to 40 μg/g for TBT. As with the fish, the majority of the BTs in sediment were present as TBT, which suggested recent exposure of the aquatic environment of the region to TBT.  相似文献   

6.
7.
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.  相似文献   

8.
Mn in street dust and soil from selected roads was studied to assess the contribution of combustion of vehicular methylcyclopentadienyl manganese tricarbonyl (MMT) to Mn levels and distribution in Pretoria, South Africa. Total Mn concentrations ranged from (329.1-863.9 μg g−1) for dust and (215.8-450.6 μg g−1) for soil. These values were significantly higher than the mean value (278.9 μg g−1) found on soil from a rural environment in Pretoria. The lowest value for the dust sample (329.1 μg g−1) was close to the mean background level of 330 μg g−1 for Mn in soil. Mn distribution in the samples was most in the residual fraction (178.18-487.50 μg g−1) and (140.76-293.40 μg g−1) for dust and soil respectively. Mn in the other fractions were 56.45-202.60 μg g−1 oxides, 90.71-45.34 μg g−1 organic, 45.36-12.65 μg g−1 carbonates and 1.98-6.72 μg g−1 exchangeable for dust and 32.54–167.31 μg g−1 oxides, 34.23–70.45 μg g−1 organic, 10.98-30.45 μg g−1 carbonate and 1.0-4.87 μg g−1 exchangeable for soil. Major source of Mn determined was mainly from the combustion of vehicular MMT.  相似文献   

9.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   

10.
Agricultural practices are usually supported by several chemical substances, such as herbicides. Linuron and chlorbromuron are phenylurea herbicides largely used to protect crops from weeds, blocking photosynthesis by inhibition of the photosystem II complex. The former, also commercially known as lorox or afalon, is selectively used to protect bean and French bean plants, fennels, and celeriacs; the second, commercially known as maloran, is selectively used for carrots, peas, potatoes, soy sprouts, and sunflowers. Considering the widespread use of herbicides and, more generally, pesticides, it is important to clarify their involvement on human health, one of them concerning the possible direct or indirect effect on the genome of exposed populations. Here, we show that these herbicides are endowed by mutagenic properties, as demonstrated by an increased number of chromosomal aberrations (CAs) in two exposed Chinese hamster cell lines derived from ovary and epithelial liver, respectively. This was also confirmed by sister chromatid exchange (SCE) and micronucleus (MN) assays. Our present and previously obtained data clearly indicate that phenylurea herbicides must be used with great caution, especially for agricultural workers who use large amounts of herbicides during their work, and particular attention should be given to residues of these herbicides and their involvement in environmental pollution.  相似文献   

11.
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h−1 for atrazine and 0.039 h−1 for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters.  相似文献   

12.

A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography–diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 μ g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

13.
Abstract

The objective of this study was to identify and quantify herbicide residues in water samples of rain, cisterns, streams, ponds, springs, semi-artesian wells, dams and a river in the Rio Samambaia sub-basin in the Federal District and eastern Goiás. A total of 287 samples were collected from 20 farms in the sub-basin in the rainy (February, summer) and dry (August, winter) seasons in 2016. Aminomethylphosphonic acid (AMPA, a glyphosate metabolite), clethodim, chlorimuron-ethyl, diuron, fluazifop acid (a fluazifop-p-butyl metabolite and the active ingredient), haloxyfop acid (a haloxyfop-methyl metabolite and the active ingredient), imazamox, mesotrione, metsulfuron, nicosulfuron and pendimethalin were not identified in any water sample. In the rainy season, approximately 99% of the samples contained residues at least one of the evaluated herbicides; in the dry season (, 100% of the samples contained residues of at least one of the evaluated herbicides. When considering only detection frequency, metribuzin, atrazine, clomazone and haloxyfop-methyl were the main herbicides found in the water of the Samambaia River sub-basin. In turn, based on levels higher than the limit of quantification, the main compounds detected were atrazine, clomazone, haloxyfop-methyl and glyphosate. In both seasons, the highest relative concentrations of herbicides for the rainy and dry seasons were found in spring water, 25% and 56%, respectively, and dam water, 23% and 16%, respectively.  相似文献   

14.
农业管理实践对除草剂环境行为的影响   总被引:1,自引:0,他引:1  
除草剂的土壤环境行为与受人为控制的农业管理实践有密切的关系。本文通过文献调研综合分析了农田灌溉、耕作制度、施肥、作物秸秆还田和除草剂施用量等农业管理实践对除草剂土壤环境行为的影响 ,并据此提出了减轻除草剂污染地下水的若干思路。  相似文献   

15.
Background, aim, and scope  Large-scale deforestation is occurring in subarctic North America following clearing by salvage logging or insect attack. Numerous shrubs, herbs, and deciduous tree species tend to dominate areas on which stands of white spruce have grown. In the absence of economically advantageous mechanical methods, several herbicides have value in efforts to reforest by planting white spruce. Glyphosate, imazapyr, triclopyr, and hexazinone are all capable of selectively removing many competing species, but there is concern about whether they would degrade naturally or persist owing to the frigid climate. Materials and methods  We established test plots with all four herbicides in upland and river bottom sites at 65°N and 58°N latitudes. The northern site has extremely cold winters, with soils that freeze to a depth of 1–2 m, and precipitation of 275 mm/year. The southern site has heavy rain and snowfall, amounting to 2,250 mm/year evenly distributed. Soil seldom freezes deeply. On each test plot, one of the four herbicides was applied at twice the normal operational use rate to facilitate detection. They were applied at the normal timing, with hexazinone, imazapyr, and triclopyr applied in June and glyphosate applied in fall. Soils were sampled immediately after treatment and those samples used as references for dissipation data gathered over the next 11–14 months from soil 0- to 15- and 15- to 45-cm depths. Results  Dissipation rates did not follow first-order rates because freezing conditions slowed most microbial activity. All products dissipated to close to or below detection limits within the time of the study. Dissipation from vegetation was substantially more rapid and depended on the nature of the plants treated as well as the product used. While soil residues dissipated more slowly than in temperate regions, they did display consistent dissipation patterns during above-freezing conditions and also the influence of microbial activity. Mobility was very limited with all products but hexazinone. Discussion  These products dissipate during summer in high latitudes much as they would in temperate climates. Winter changes are small, but are not unlike some changes reported elsewhere under freezing conditions. Unlike many other studies, soil water did not influence dissipation heavily, but the high latitude and semi-arid climate also did not create severely droughty soils. Residues in plants were much higher than those in soils, but denatured the vegetation quickly, leading to unsuitability for forage in any case. Conclusions  Low toxicity of these products and their metabolites combined with consistent dissipation and low mobility suggest that toxic hazard of their use at high latitudes need not be a matter of serious concern to humans, terrestrial wildlife, or aquatic systems. They are safe for use in management and rehabilitation of boreal forests when used properly. Recommendations and perspectives  Dissipation at rates approaching those in warmer climates offer a hypothesis that microflora native to high latitudes may be adapted to destruction of such molecules at lower temperatures than may be indicated by experiments with microflora adapted to warmer climates. Residues pose no observable risk to wildlife or humans in the area of use when products are applied properly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available for authorized users.  相似文献   

16.

Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004–2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [μg kg?1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June–Sept, 2004, 2005) the growing season. In contrast, mean concentrations (μg L?1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 μg kg?1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

17.
The extensive use of pesticides represents a risk to human health and to the environment. This study aimed to investigate if the exposure to atrazine and diuron, two herbicides widely used in Brazil, could induce changes in the susceptibility profile to aztreonam, colistin and polymyxin B antimicrobials in isolates of P. aeruginosa obtained from soil samples by using the determination of minimum inhibitory concentration (MIC) test. Three isolates had an increase of MIC to aztreonam after exposure to both herbicides and one isolate did not show any MIC change. The MexAB-OprM efflux pump has already been upregulated in these isolates and the herbicides atrazine and diuron did not increase MexAB-OprM overexpression. Therefore, the decrease in aztreonam susceptibility was not directly related to this pump, suggesting that probably other mechanisms should be involved.  相似文献   

18.
Inconsistent data presently available on the platinum emission rate of cars in Germany equipped with catalytic converters are evaluated. Automobile sources of Pt other than autocatalysts are quantified and found to be 1–6 orders of magnitudes lower than the Pt emissions attributed to catalytic converters. A transfer of emission rates derived from test stand experiments to more realistic street conditions reaches 0.8 μg Pt/km. In this manner, data from test stand experiments and from environmental investigations meet in the range of 0.5–0.8 μg Pt/km.  相似文献   

19.
In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO3), tin (IV) oxide (SnO2) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t½) ranged from 8 to 27 min (t30W = 0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na2S2O8 system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L−1).  相似文献   

20.
Abstract

The region of Ribeirão Preto City, located in Southeast of Brazil, São Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 μg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 μg/L, which is above the allowable 0.1 μg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, “Chemical Movement in Layered Soil,” as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号