首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi KI  Lee DH 《Chemosphere》2007,66(2):370-376
To further understand the effects of wet scrubbers on PCDD/DF levels, it was measured the concentrations of PCDD/DF, dust, and other gaseous pollutants at both the inlets and the outlets of seven wet scrubbers. As a result, the concentrations of PCDD/DF at the inlets and outlets of the wet scrubbers ranged from 0.2 to 37.4, and 0.8 to 6.0 ng TEQ N m-3, respectively. With the exceptions of wet scrubbers F and G, the PCDD/DF levels decreased by and large in most wet scrubbers. It was thought that their relatively high removal efficiencies were more increased with heavier loads of dust and particle-bound PCDD/DF. On the other hand, it was also surveyed the increase of gaseous PCDD/DF in wet scrubber, where the total level of PCDD/DF was decreased. However, it was not sure whether it had been resulted from the thermal adsorption/desorption phenomenon between packing materials and emission gases or not. At the very least, however, although there still remains an unexplained aspect for the increase of gaseous PCDD/DF, it is clear that wet scrubbers can be sufficiently applied to remove PCDD/DF to a certain extent, if only removal efficiencies for the particle loads are high, and if a significant part of the PCDD/DF at the inlets is particle associated.  相似文献   

2.
Chang MB  Chi KH  Chang-Chien GP 《Chemosphere》2004,55(11):1457-1467
Partitioning of PCDD/F congeners between gaseous and particulate phases and removal efficiencies of the air pollution control devices (APCDs) for PCDD/Fs at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS) and selective catalytic reduction system (SCR) as APCDs. The average PCDD/F concentration of stack gas is 1.49 ng/N m3, and the International Toxic Equivalent Quantity (I-TEQ) is 0.043 ng-I-TEQ/N m3. The EP increases PCDD/F concentration by 174.0% while the average removal efficiency of WS + SCR system for PCDD/Fs reaches 99.1%. In addition, the PCDF removal efficiency achieved with WS + SCR system (97.1–99.8%) is higher than that for PCDDs (96.5–99.3%). The results obtained on gas/particulate partitioning in flue gas indicate that the particulate-phase PCDD/Fs accounted for 65% at the inlet of EP, 20% at the outlet of EP and 50% at the stack, respectively, of the total PCDD/F concentrations. This study also indicates that as the chlorination level of PCDD/F congeners increases, the percentage of PCDD/Fs existing in gas phase decreases in all flue gas samples.  相似文献   

3.
A study was conducted to observe the changes in polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) levels and congener profiles in the flue gas of a hazardous waste incinerator during two start-up periods. Flue gas samplings were performed simultaneously through Air Pollution Control Devices (APCDs) (including boiler outlet, electrostatic precipitator (ESP) outlet, wet scrubbers (WS) outlet, and activated carbon (AC) filter outlet) in different combustion temperatures during a planned cold (long) start-up and an unplanned warm (short) start-up. The results showed that PCDD/F concentrations could be elevated during the start-up periods up to levels 3–4 times higher than those observed in the normal operation. Especially lower combustion temperatures in the short start-ups may cause high PCDD/F concentrations in the raw flue gas. Assessment of combustion temperatures and Furans/Dioxins values indicated that surface-catalyzed de novo synthesis was the dominant pathway in the formation of PCDD/Fs in the combustion units. PCDD/F removal efficiencies of Air Pollution Control Devices suggested that formation by de novo synthesis existed in ESP also when in operation, leading to increase of gaseous phase PCDD/Fs in ESP. Particle-bound PCDD/Fs were removed mainly by ESP and WS, while gaseous phase PCDD/Fs were removed by WS, and more efficiently by AC filter.

Implications: This paper evaluates PCDD/F emissions and removal performances of APCDs (ESP, wet scrubbers, and activated carbon) during two start-up periods in an incinerator. The main implications are the following: (1) start-up periods increase PCDD/F emissions up to 2–3 times in the incinerator; (2) low combustion temperatures in start-ups cause high PCDD/F emissions in raw gas; (3) formation of PCDD/Fs by de novo synthesis occurs in ESP; (4) AC is efficient in removing gaseous PCDD/Fs, but may increase particle-bound ones; and (5) scrubbers remove both gaseous and particle-bound PCDD/Fs efficiently.  相似文献   

4.
Chang MB  Chi KH  Chang SH  Yeh JW 《Chemosphere》2007,66(6):1114-1122
Partitioning of PCDD/F congeners between vapor/solid phases and removal and destruction efficiencies achieved with selective catalytic reduction (SCR) system for PCDD/Fs at an existing municipal waste incinerator (MWI) and metal smelting plant (MSP) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP, operating temperature: 230 degrees C), wet scrubbers (WS, operating temperature: 70 degrees C) and SCR (operating temperature: 220 degrees C) as major air pollution control devices (APCDs). PCDD/F concentration measured at stack gas of the MWI investigated is 0.728 ng-TEQ/Nm(3). The removal efficiency of WS+SCR system for PCDD/Fs reaches 93% in the MWI investigated. The MSP investigated is equipped with EP (operating temperature: 240 degrees C) and SCR (operating temperature: 290 degrees C) as APCDs. The flue gas sampling results also indicate that PCDD/F concentration treated with SCR is 1.35 ng-TEQ/Nm(3). The SCR system adopted in MSP can remove 52.3% PCDD/Fs from flue gases (SCR operating temperature: 290 degrees C, Gas flow rate: 660 kN m(3)/h). In addition, the distributions of PCDD/F congeners observed in the flue gases of the MWI and MSP investigated are significantly different. This study also indicates that the PCDD/F congeners measured in the flue gases of those two facilities are mostly distributed in vapor phase prior to the SCR system and shift to solid phase (vapor-phase PCDD/Fs are effectively decomposed) after being treated with catalyst. Besides, the results also indicate that with SCR highly chlorinated PCDD/F congeners can be transformed to lowly chlorinated PCDD/F congeners probably by dechlorination, while the removal efficiencies of vapor-phase PCDD/Fs increase with increasing chlorination.  相似文献   

5.
Wang HC  Hwang JF  Chi KH  Chang MB 《Chemosphere》2007,67(9):S177-S184
The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).  相似文献   

6.
Yuan CS  Lin HY  Wu CH  Liu MH 《Chemosphere》2005,59(1):135-145
This study investigates the partition of heavy metals in both solid and gas phases in the flue gas from municipal solid waste (MSW) incinerators. Six MSW incinerators in Taiwan were examined and heavy metals in the flue gas at the inlets and outlets of air pollution control devices (APCDs) were analyzed. Heavy metals including Hg, Pb, Cd, Zn, Cu and Cr were sampled by USEPA Method 29 and further analyzed using inductively coupled plasma-mass spectroscopy (ICP-MS) and cold vapor atomic absorption spectrometry (CVAAS). Experimental results revealed that the removal efficiencies of the APCDs for the heavy metals Pb, Cd, Zn, Cu and Cr greatly exceeded 90%, but that of Hg did not. Two groups of heavy metals upstream of APCDs were observed. Pb, Cd, Zn, Cu and Cr were present mainly in the solid phase with a solid to gas ratio (S/G) of over 12.3. However, in most cases, mercury appeared mainly in the gas phase with an S/G ratio from 0.15 to 1.04, because it has a low boiling point. Additionally, treatment with the APCDs increased the S/G ratio of mercury because gaseous mercury could be removed by injecting powdered activated carbon (PAC) into the flue gas. Moreover, the distribution of particle sizes in the solid phase was bimodal. Finer particles (d(p)2.5 microm) contained more Cr and Hg.  相似文献   

7.
Chi KH  Chang SH  Huang CH  Huang HC  Chang MB 《Chemosphere》2006,64(9):1489-1498
Activated carbon adsorption is commonly used to control dioxin-like congener (PCDD/Fs and PCBs) emissions. Partitioning of PCDD/Fs and PCBs between vapor and solid phases and their removal efficiencies achieved with existing air pollution control devices (APCDs) at a large-scale municipal waste incinerator (MWI) and an industrial waste incinerator (IWI) are evaluated via intensive stack sampling and analysis. Those two facilities investigated are equipped with activated carbon injection (ACI) with bag filter (BF) and fixed activated carbon bed (FACB) as major PCDD/F control devices, respectively. Average PCDD/F and PCB concentrations of stack gas with ACI+BF as APCDs are 0.031 and 0.006ng-TEQ/Nm(3), and that achieved with FACB are 1.74 and 0.19ng-TEQ/Nm(3) in MWI and IWI, respectively. The results show that FACB could reduce vapor-phase PCDD/Fs and PCBs concentrations in flue gas, while the ACI+BF can effectively adsorb the vapor-phase dioxin-like congener and collect the solid-phase PCDD/Fs and PCBs in the meantime. Additionally, the results of the pilot-scale adsorption system (PAS) experimentation indicate that each gram activated carbon adsorbs 105-115ng-PCDD/Fs and each surface area (m(2)) of activated carbon adsorbs 10-25ng-PCDD/Fs. Based on the results of PAS experimentation, this study confirms that the surface area of mesopore+macropore (20-200A) of the activated carbon is a critical factor affecting PCDD/F adsorption capacity.  相似文献   

8.
With increasing attention on sulfuric acid emission, investigations on the removal characteristics of sulfuric acid aerosols by the limestone gypsum wet flue gas desulfurization (WFGD) system and the wet electrostatic precipitator (WESP) were carried out in two coal-fired power plants, and the effects of the WFGD scrubber type and the flue gas characteristics were discussed. The results showed that it was necessary to install the WESP device after desulfurization, as the WFGD system was inefficient to remove sulfuric acid aerosols from the flue gas. The removal efficiency of sulfuric acid aerosols in the WFGD system with double scrubbers ranged from 50% to 65%, which was higher than that with a single scrubber, ranging from 30% to 40%. Furthermore, the removal efficiency of WESP on the sulfuric acid aerosols was from 47.9% to 52.4%. With increased concentrations of SO3 and particles in the flue gas, the removal efficiencies of the WFGD and the WESP on the sulfuric acid aerosols were increased.

Implications: Investigations on removal of sulfuric acid aerosols by the WFGD and the WESP in the power plants were aimed at the control of sulfuric acid emission. The results showed that the improvement of the WFGD system was beneficial for the reduction of sulfuric acid emission, while the WESP system was essential to control the final sulfuric acid aerosol concentration.  相似文献   


9.
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.  相似文献   

10.
The term “wet scrubber” or simply “scrubber,” for the purpose of this report, is intended to include any device using liquid to effect the removal of solid or liquid particles which are entrained in process air or gas streams. This guide is intended to provide information required for the selection and performance evaluation of all types of scrubbers installed for the primary purpose of removing such particulates from any process gas stream. It is not intended to cover scrubbers for the collection of gaseous and/or vapor constituents which involve gas absorption mechanisms.  相似文献   

11.
Results with the EPRI 2.5 MW(e) Integrated Environmental Control Pilot Plant (IECPP) indicate the interrelationship of particulate penetration, SO2 scrubber operation, waste production, and waste properties. Tests compared a fabric filter/wet scrubber and ESP/wet scrubber, the latter operated to simulate 1979 New Source Performance Standards (NSPS), 1971 NSPS, and pre-NSPS ESP units. Tests were conducted with low-sulfur coal producing a flue gas concentration of400ppm; flue gas spiking could be used to increase SO2 to 2000 ppm. Scrubber waste was dewatered in a thickener and vacuum belt filter (to 55 percent solids content), and mixed with fly ash. The pilot SO2 scrubber—when preceded by an ESP and forced to operate in zero-discharge—captured less SO2 than when preceded by a fabric filter. Also, scrubber operation with the ESP produced a greater quantity of waste with difficult handling characteristics, as compared to operation with the fabric filter. These difficulties occurred with particulate penetration above 0.10 lb/MBtu, which could reduce reagent utilization to 80percent. These results are attributable to inhibited limestone dissolution due to accumulation of an aluminum/fluoride compound. For both lowsulfur and simulated high-sulfur test conditions, allowing wastewater discharge to purge aluminum/fluoride content restored performance to design levels. Particulate control efficiency also affected solid waste physical properties. The fabric filter/wet scrubber produced the lowest solid waste permeability (10?8 cm/s). ESP operation at 1979 NSPS and pre-1971 NSPS ESPs increased solid waste permeability to 10?7 and 10?6 cm/s, respectively. These results are meaningful for SO2 scrubbers both for new plants and for retrofit to units with pre-NSPS ESPs, and could become significant with the increasing trend to restricted water discharge.  相似文献   

12.
Zhang HJ  Ni YW  Chen JP  Zhang Q 《Chemosphere》2008,70(4):721-730
Optimizing the operating parameters to minimize polychlorodibenzo-p-dioxins and polychlorodibenzofurans (PCDD/F) emission is the common interest of the municipal solid waste (MSW) incineration industry. In this study, we investigated the distribution of tetra- to octa-CDD/F along the flue gas line in a full-scale reciprocating grate incinerator and evaluated the effects of temperature control and O(2) level on PCDD/F formation. Six runs were laid out and all performed under sufficient burning conditions, in which the combustion efficiency of MSW was more than 99.9%. The total concentration of tetra- to octa-CDD/F measured at the boiler outlet showed an increasing tendency with the increase of boiler outlet temperature (T(B)) from 214 degrees C to 264 degrees C. When flue gas ran across the semi-dry scrubber and cyclone precipitator, in which the temperature varied from 264 degrees C to 162 degrees C, the concentrations of the lower chlorinated dioxins and furans were significantly raised, especially for the TCDF. Increasing O(2) supply from 6.0% to 10.5% essentially led to a higher yield of tetra- to octa-PCDD/F, suggested that under sufficient burning conditions the lower O(2) level was favorable for reducing PCDD/F formation and emission. The variation of O(2) level did not give rise to a systematical change of PCDD/F homologue pattern. For all measurements, the isomer distributions of tetra- to hepta-PCDD/F were more or less the same, nearly independent of variations in the operating conditions and sampling positions. Only the significant increase of the sum of 1,3,7,8-TCDF and 1,3,7,9-TCDF was found in the zone after the boiler section.  相似文献   

13.
Method 30B and the Ontario Hydro Method (OHM) were used to sample the mercury in the flue gas discharged from the seven power plants in Guizhou Province, southwest China. In order to investigate the mercury migration and transformation during coal combustion and pollution control process, the contents of mercury in coal samples, bottom ash, fly ash, and gypsum were measured. The mercury in the flue gas released into the atmosphere mainly existed in the form of Hg°. The precipitator shows a superior ability to remove Hgp (particulate mercury) from flue gas. The removal efficiency of Hg2+ by wet flue gas desulfurization (WFGD) was significantly higher than that for the other two forms of mercury. The synergistic removal efficiency of mercury by the air pollution control devices (APCDs) installed in the studied power plants is 66.69–97.56%. The Hg mass balance for the tested seven coal-fired power plants varied from 72.87% to 109.67% during the sampling time. After flue gas flowing through APCDs, most of the mercury in coal was enriched in fly ash and gypsum, with only a small portion released into the atmosphere with the flue gas. The maximum discharge source of Hg for power plants was fly ash and gypsum instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.

Implications: Method 30B and the Ontario Hydro Method (OHM) were used to test the mercury concentration in the flue gas discharged from seven power plants in Guizhou Province, China. The concentrations of mercury in coal samples, bottom ash, fly ash, and gypsum were also measured. By comparison of the mercury content of different products, we found that the maximum discharge source of Hg for power plants was fly ash and gypsum, instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.  相似文献   


14.
In this study, polycyclic aromatic hydrocarbon (PAH) emissions from two batch-type medical waste incinerators (MWIs), one with a mechanical grate and the other with a fixed grate, both operated by a medical center, were assessed. Both MWIs shared the same air-pollution control devices (APCDs), with an electrostatic precipitator and a wet scrubber installed in series. Results show that when APCDs were used, total PAHs and total benzo[a]pyrene equivalent (total BaP(eq)) emission concentrations of both MWIs were reduced from 2220 to 1870 microg/m3 and 50 to 12.4 microg/m3, respectively. We used the Industrial Source Complex Short Term model (ISCST) to estimate the ground-level concentrations of the residential area and the traffic intersection located at the downwind side of the two MWIs. For the traffic intersection, we found both total PAHs and total BaP(eq) transported from MWIs to both studied areas were not significant. For the residential area, similar results were found when APCDs were used in MWIs. When APCDs were not included, we found that total PAHs transported from MWIs accounted for < 12%, but total BaP(eq) accounted for > 90%, of the on-site measured concentrations. These results suggest that the use of proper APCDs during incineration would significantly reduce the carcinogenic potencies associated with PAH emissions from MWIs to the residential area.  相似文献   

15.
A turbulent wet scrubber was designed and developed to scrub particulate matter (PM) at micrometer and submicrometer levels from the effluent gas stream of an industrial coal furnace. Experiments were conducted to estimate the particle removal efficiency of the turbulent scrubber with different gas flow rates and liquid heads above the nozzle. Particles larger than 1 µm were removed very efficiently, at nearly 100%, depending upon the flow rate, the concentration of the dust-laden air stream, and the water level in the reservoir. Particles smaller than 1 µm were also removed to a greater extent at higher gas flow rates and for greater liquid heads. Pressure-drop studies were also carried out to estimate the energy consumed by the scrubber for the entire range of particle sizes distributed in the carrier gas. A maximum pressure drop of 217 mm H2O was observed for a liquid head of 36 cm and a gas flow rate of 7 m3/min. The number of transfer units (NTU) analysis for the efficiencies achieved by the turbulent scrubber over the range of particles also reveals that the contacting power achieved by the scrubber is better except for smaller particles. The turbulent scrubber is more competent for scrubbing particulate matter, in particular PM2.5, than other higher energy or conventional scrubbers, and is comparable to other wet scrubbers of its kind for the amount of energy spent.

Implications: The evaluation of the turbulent scrubber is done to add a novel scrubber in the list of wet scrubbers for industrial applications, yet simple in design, easy to operate, with better compactness, and with high efficiencies at lower energy consumption. Hence the turbulent scrubber can be used to combat particulate from industrial gaseous effluents and also has a scope to absorb gaseous pollutants if the gases are soluble in the medium used for particles capture.  相似文献   

16.
测定了流化床垃圾焚烧炉焚烧产生的飞灰、烟尘和烟气中的2,3,7,8位氯取代二噁英同类物的含量及其毒性当量。结果表明,产生的二噁英主要存在于飞灰中,烟气中的含量很少。飞灰中二噁英总浓度和毒性当量分别为8.44ng/g和0.80ng/g,经过布袋除尘器后的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为0.34ng/m^3和0.02ng/m^3,而布袋除尘器前的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为40.78ng/m^3和3.0ng/m^3。飞灰和烟尘中2,3,7,8位氯取代二噁英同类物的分布相似,但是与烟气中2,3,7,8位氯取代二噁英同类物的分布差别较大。通过了解有毒二噁英同类物的分布,可以进一步优化流化床垃圾焚烧炉的焚烧条件,降低二噁英的排放量,减少垃圾焚烧对环境的污染。  相似文献   

17.
Abstract

In this study, polycyclic aromatic hydrocarbon (PAH) emissions from two batch-type medical waste incinerators (MWIs), one with a mechanical grate and the other with a fixed grate, both operated by a medical center, were assessed. Both MWIs shared the same air-pollution control devices (APCDs), with an electrostatic precipitator and a wet scrubber installed in series. Results show that when APCDs were used, total PAHs and total benzo- [a]pyrene equivalent (total BaPeq) emission concentrations of both MWIs were reduced from 2220 to 1870 µg/m3 and 50 to 12.4 µg/m3, respectively. We used the Industrial Source Complex Short Term model (ISCST) to estimate the ground-level concentrations of the residential area and the traffic intersection located at the down-wind side of the two MWIs. For the traffic intersection, we found both total PAHs and total BaPeq transported from MWIs to both studied areas were not significant. For the residential area, similar results were found when APCDs were used in MWIs. When APCDs were not included, we found that total PAHs transported from MWIs accounted for <12%, but total BaPeq accounted for >90%, of the on-site measured concentrations. These results suggest that the use of proper APCDs during incineration would significantly reduce the carcinogenic potencies associated with PAH emissions from MWIs to the residential area.  相似文献   

18.
A large number of pressurized coal gasification processes being developed propose to use venturi scrubbers for particulate removal at high pressures. Theoretical predictions based on venturi scrubber performance models indicate that particle collection efficiency will decrease severely in these high gas pressure applications.

An exploratory theoretical and experimental program was performed to study the effect of gas pressure on venturi scrubber performance. Experiments were done on a 0.47 m3/s (1000 acfm) pilot scale venturi scrubber. Particle collection performance was determined as a function of scrubber pressure drop for venturi scrubbers operating In the range of 1-10 atm total pressure. Experimental results confirmed that the particle collection efficiency of venturi scrubbers decreases for a given scrubber pressure drop as total gas pressure Is increased. To achieve the same particle collection efficiency, the pressure drop across a venturi scrubber operated at 10 atm Is about 10 times that of the same scrubber operated at 1 atm pressure.  相似文献   

19.
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers.

Implications: This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.  相似文献   


20.
Emissions of sulfur trioxide from coal-fired power plants   总被引:1,自引:0,他引:1  
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号