首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent   总被引:7,自引:0,他引:7  
Zhang Y  Yang M  Huang X 《Chemosphere》2003,51(9):945-952
The removal of arsenic(V) by a new Ce-Fe adsorbent was evaluated under various conditions. Under an initial As(V) of 1.0 mg l(-1), the adsorption capacity of the Ce-Fe absorbent was constant around a value of 16 mgg(-1) over a wide pH range (3-7), while a maximum adsorption capacity of 8.3 mgg(-1) was obtained over a narrow pH range around 5.5 for activated alumina, a conventional adsorbent. Kinetics of adsorption obeys a pseudo-first-order rate equation with the rate constant K(ad) as 1.84 x 10(-3) min(-1). The pattern of adsorption of As(V) by the adsorbent fitted well both the Langmuir and Freundlich models. A Langmuir Q(0) of 70.4 mgg(-1) was obtained at an initial pH of 5.0 and temperature of 20 degrees C, significantly higher than those of other adsorbents reported. Phosphate seriously inhibited the removal of As(V) while fluoride did not compete with As(V) even at an F/As molar ratio as high as 30, suggesting that the adsorption sites for As(V) and fluoride were different. Salinity, hardness, and other inorganic anions such as Cl(-), NO(3)(-), and SO(4)(2-) had no apparent effect on As(V) adsorption. Fourier transform infrared spectra of Ce-Fe adsorbent before and after As(V) adsorption demonstrated that M-OH groups plays an important role for As(V) ions removal in the adsorption mechanisms of Ce-Fe adsorbent.  相似文献   

2.
The performance of a new anion exchanger (AE) prepared from coconut coir pith (CP), for the removal of arsenic(V) [As(V)] from aqueous solutions was evaluated in this study. The adsorbent (CP-AE) carrying dimethylaminohydroxypropyl weak base functional group was synthesized by the reaction of CP with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. IR spectroscopy results confirm the presence of -NH(+)(CH(3))(2)Cl(-) group in the adsorbent. XRD studies confirm the decrease of crystallinity in CP-AE compared to CP, and it favours the protrusion of the functional group into the aqueous medium. Batch experiments were conducted to examine the efficiency of the adsorbent on As(V) removal. Maximum removal of 99.2% was obtained for an initial concentration of 1 mgl(-1) As(V) at pH 7.0 and an adsorbent dose of 2 gl(-1). The kinetics of sorption of As(V) onto CP-AE was described using the pseudo-second-order model. The equilibrium isotherms were determined for different temperatures and the results were analysed using the Langmuir equation. The temperature dependence indicates an exothermic process. Utility of the adsorbent was tested by removing As(V) from simulated groundwater. Regeneration studies were performed using 0.1N HCl. Batch adsorption-desorption studies illustrate that CP-AE could be used to remove As(V) from ground water and other industrial effluents.  相似文献   

3.
Removal of arsenic from water by electrocoagulation   总被引:16,自引:0,他引:16  
In the present study electrocoagulation (EC) has been evaluated as a treatment technology for arsenite [As(III)] and arsenate [As(V)] removal from water. Laboratory scale experiments were conducted with three electrode materials namely, iron, aluminum and titanium to assess their efficiency. Arsenic removal obtained was highest with iron electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 microgl(-1) with iron electrodes. Current density was varied from 0.65 to 1.53 mAcm(-2) and it was observed that higher current density achieved rapid arsenic removal. Experimental results at different current densities indicated that arsenic removal was normalized with respect to total charge passed and therefore charge density has been used to compare the results. Effect of pH on arsenic removal was not significant in the pH range 6-8. Comparative evaluation of As(III) and As(V) removal by chemical coagulation (with ferric chloride) and electrocoagulation has been done. The comparison revealed that EC has better removal efficiency for As(III), whereas As(V) removal by both processes was nearly same. The removal mechanism of As(III) by EC seems to be oxidation of As(III) to As(V) and subsequent removal by adsorption/complexation with metal hydroxides generated in the process.  相似文献   

4.
The TiO2-catalyzed photooxidation of arsenite (As(III)) to arsenate (As(V)) was studied in aqueous TiO2 suspensions using a solar simulator which emitted ultraviolet and visible radiations. The concentration of As(III) was varied between 50 microg l(-1) and 10 mg l(-1), and the concentration of TiO2 between 1 mg l(-1) and 50 mg l(-1). Total oxidation of As(III) to As(V) occurred within minutes. The concentration of As(III) declined exponentially which indicates first-order kinetics. In the pH range between 5 and 9 there was no significant influence of the pH of the suspension on the reaction rate. Batch experiments without irradiation showed that part of the arsenic was adsorbed on the TiO2 surface. When using 100 microg l(-1) As and between 1 mg l(-1) and 50 mg l(-1) TiO2, 8-39% of As(III) and up to 73% of As(V) were adsorbed by TiO2. As(III) was also oxidized by UV radiation in the absence of TiO2, but the reaction was slower than in the presence of TiO2 resulting in an irradiation time too long for practical use. In addition, oxidation of As(III) in the presence of TiO2 was also observed under solar irradiation within a few minutes.  相似文献   

5.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

6.
A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 μg L?1 As(III), 246 μg L?1 As(V), 151 μg L?1 MMA, and 202 μg L?1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 μg L?1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III).  相似文献   

7.
Iron oxide-loaded slag for arsenic removal from aqueous system   总被引:5,自引:0,他引:5  
Zhang FS  Itoh H 《Chemosphere》2005,60(3):319-325
An effective adsorbent for arsenic removal from aqueous system was synthesized by loading iron(III) oxide on municipal solid waste incinerator melted slag. The loading was accomplished via chemical processes and thermal coating technique. The key point of the technique was the simultaneous generation of amorphous FeOOH sol and silica sol in-situ and eventually led to the formation of Fe-Si surface complexes which combined the iron oxide with the melted slag tightly. The surface morphology of the iron oxide-loaded slag was examined and the loading mechanisms were discussed in detail. The adsorbent was effective for both arsenate and arsenite removal and its removal capabilities for As(V) and As(III) were 2.5 and 3 times of those of FeOOH, respectively. Both affinity adsorption and chemical reactions contributed to arsenic removal. The effects of solution pH, contact time, arsenic concentration and adsorbent dosage on arsenic removal were examined and the optimum removal conditions were established. Furthermore, leaching of hazardous elements such as Cr(VI), As, Se, Cd and Pb from the adsorbent at a pH range of 2.5-12.5 was below the regulation values. Accordingly, it is believed that the iron oxide-loaded slag developed in this study is environmentally acceptable and industrially applicable for wastewater treatment.  相似文献   

8.
Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L−1, concentrations of As (III) and As (V) were reduced from 2 mg L−1 to <5 μg L−1 in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94 ± 1.5 mg g−1 and 119 ± 2.6 mg g−1 at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.  相似文献   

9.

Introduction  

The nano-scale zero-valent iron (NZVI) was used for the removal of arsenite (As(III)) and arsenate (As(V)) in aqueous solution. Batch experiments were conducted to investigate the effects of initial pH, initial arsenic concentration, dissolved oxygen (DO), and ratio of As(III)/As(V) on arsenic removal.  相似文献   

10.
Toda K  Takaki M  Hashem MA 《Chemosphere》2008,72(10):1517-1523
Arsenic water pollution is a big issue worldwide. Determination of inorganic arsenic in each oxidation state is important because As(III) is much more toxic than As(V). An automated arsenic measurement system was developed based on complete vaporization of As by a sequential procedure and collection/preconcentration of the vaporized AsH(3), which was subsequently measured by a flow analysis. The automated sensitive method was applied to monitoring As(III) and As(V) concentrations in contaminated water standing overnight. Behaviors of arsenics were investigated in different conditions, and unique time dependence profiles were obtained. For example, in the standing of anaerobic water samples, the As(III) concentration immediately began decreasing whereas dead time was observed in the removal of As(V). In normal groundwater conditions, most arsenic was removed from the water simply by standing overnight. To obtain more effective removal, the addition of oxidants and use of steel wools were investigated. Simple batch wise treatments of arsenic contaminated water were demonstrated, and detail of the transitional changes in As(III) and As(V) were investigated.  相似文献   

11.
Recently, nano zero-valent iron (nZVI) has emerged as an effective adsorbent for the removal of arsenic from aqueous solutions. However, its use in various applications has suffered from reactivity loss resulting in a decreased efficiency. Thus, the aim of this study was to develop an effective arsenic adsorbent as a core/shell structural nZVI/manganese oxide (or nZVI/Mn oxide) to minimize the reactivity loss of the nZVI. As the major result, the arsenic adsorption capacities of the nZVI/Mn oxide for As(V) and As(III) were approximately two and three times higher than that of the nZVI, respectively. In addition, the As(V) removal efficiency of the nZVI/Mn oxide was maintained through 4 cycles of regeneration whereas that of the nZVI was decreased significantly. The enhanced reactivity and reusability of the nZVI/Mn oxide can be successfully explained by the synergistic interaction of the nZVI core and manganese oxide shell, in which the manganese oxides participate in oxidation reactions with corroded Fe2+ and subsequently retard the release of aqueous iron providing additional surface sites for arsenic adsorption. In summary, this study reports the successful fabrication of a core/shell nZVI/Mn oxide as an effective adsorbent for the removal of arsenic from aqueous solutions.  相似文献   

12.
High-level arsenite removal from groundwater by zero-valent iron   总被引:15,自引:0,他引:15  
Lien HL  Wilkin RT 《Chemosphere》2005,59(3):377-386
The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the stability of arsenic and long-term remedial performance of the permeable reactive barrier (PRB) technology. A high concentration arsenic solution (50 mg l(-1)) was prepared by using sodium arsenite (arsenic (III)) to simulate groundwater at a heavily contaminated Superfund site in the USA. Batch studies indicate that the removal of arsenic is a two-step reaction with fast initial disappearance of arsenite followed by a slow subsequent removal process. Flow-through columns were conducted at a flow rate of 17 ml h(-1) under reducing conditions for 6.6 mo. Kinetic analysis suggested that arsenic removal behaves as a zero-order reaction at high arsenic concentrations. Arsenic removal rate constants decreased with time and arsenic breakthrough was observed in the column study. Arsenic removal capacity of zero-valent iron was determined to be approximately 7.5 mg As/g Fe. Carbonate green rust was identified from the analysis of surface precipitates; arsenite uptake by green rust may be a major mechanism responsible for arsenic remediation by zero-valent iron. Analysis of HCl-extractable arsenic from iron samples indicated that approximately 28% of arsenic was in the form of arsenate suggesting that a surface oxidation process was involved in the arsenic removal with zero-valent iron.  相似文献   

13.
A simple HG-AAS technique has been evaluated and standardised for rapid speciation of As(III) and As(V) in a number of contaminated groundwater samples of West Bengal, India. Citric acid has been used for selective hydride formation of As(III). The sensitivity of the evaluated HG-AAS method is 7.91 mg(-1)l, standard deviation, 0.001 and detection limit, 0.4 microg l(-1). As(III) sensitivity remains constant in the sample pH range of 2.3-10.6. Concomitant mineral matrix of the water samples did not interfere with arsenic determination. Eight out of ten groundwater samples analysed for As(IlI)and As(V) contain more As(III), which lies in the range of 54-350 ppb. As(III) estimation in drinking water along with total arsenic should be invoked as a policy for a realistic risk assessment of the contaminated water.  相似文献   

14.
Arsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l−1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l−1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l−1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters.  相似文献   

15.
Zr-Fe双组分复合除砷吸附剂的优化制备及性能评价   总被引:1,自引:0,他引:1  
实验发现,铁氧化物或铁的羟基氧化物对As(V)有较好的吸附性能,而锆氧化物或锆水合氧化物则对As(Ⅲ)有优异的吸附选择性,但其使用的pH通常要在9的条件下。通过简单的共沉淀法制备了Zr-Fe双组分复合吸附剂,在制备过程中通过优化制备条件如:沉淀剂浓度、金属离子总浓度、金属离子配比、反应温度、反应时间及吸附剂价格等因素,最终合成出了对As(V)和As(Ⅲ)都具有良好吸附能力的吸附剂。这种吸附剂在中性条件下对As(V)和As(Ⅲ)的最大吸附量为62 mg/g和118 mg/g。  相似文献   

16.
Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250–350 h?1. Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.  相似文献   

17.
Removal of NOM from drinking water: Fenton's and photo-Fenton's processes   总被引:4,自引:0,他引:4  
Murray CA  Parsons SA 《Chemosphere》2004,54(7):1017-1023
The control of disinfection by-products during water treatment is primarily undertaken by reducing the levels of precursor species prior to chlorination. As many waters contain natural organic matter at levels of up to 15 mgl(-1) there is a need for a range of control methods to support conventional coagulation. Two such processes are the Fenton and photo-Fenton's processes and in this paper they are assessed for their potential to remove NOM from organic rich waters. The performance of both processes is shown to be depentent on pH, Fe: H2O2 ratio as well as Fe2+ dose. Under optimum conditions both processes achieved greater than 90% removal of DOC and UV254 absorbance. This removal lead to the trihalomethane formation potential of the water being reduced from 140 to below 10 microgl(-1), well below UK and US standards.  相似文献   

18.
Arsenic concentrations and solid-phase speciation were assessed as a function of depth through Fe-media beds for two commercially available products (Granular Ferric Hydroxide-GFH and Bayoxide E33-E33) from pilot-scale water treatment field tests. These results were compared with data from solution (de-ionized water-DI-H2O) concentrations of As equilibrated with Fe-media in an anoxic environment at 4 degrees C. The materials had a high capacity for As (GFH media 9620 mg kg(-1) As, E33 Media 5246 mg kg(-1)). Arsenic concentrations decreased with bed depth. For E33, X-ray absorption near-edge spectroscopy results showed that As(V) was the dominant solid-phase species. For GFH, As(III) was detected and the proportion (relative to As(V)) of As(III) increased with bed depth. Arsenic concentrations in DI-H2O equilibrated with the media were low (35 microg l(-1)) over a period of 50 d. Arsenic concentrations in the equilibrated solutions also decreased with depth. Results from tests on soluble As speciation show that As in solution is in the form of As(V). Kinetic desorption experiments carried out at different pH values (3, 5, 7, 8, and 9) show that the media exhibit some acid/base neutralization capacity and tend to bind As sufficiently. Concentrations of As in the pH desorption experiments were in the same order of magnitude as the toxicity characteristic leaching procedure extractions (tens of microgl(-1)) except at low pH values. For the GFH media tested at a pH of three, As increases in solution and is mainly associated with colloidal (operationally defined as between 0.1 and 1.0 microm) iron.  相似文献   

19.
Twenty four hours diel cycles of arsenic speciation in Acid Mine Drainage (AMD) due to photooxidation have been reported for the first time. AMD samples were taken during 48 h (31st March and 1st April, 2005) at 6 h intervals from the effluent of a massive abandoned polymetallic sulphide mine of the Iberian Pyrite Belt (Sw Spain). Samples were preserved in situ using cationic exchange prior to analysis by coupled high performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS) for arsenic speciation. The results indicated the presence of inorganic arsenic species with daily means of 262mugl(-1) for As(V) and 107 microg l(-1) for As(III). No marked diel trend was observed for As(V). However, a marked diel trend was observed for As(III) in the two studied days, with maximum concentrations during nighttime (141-143 microg l(-1)) and minimum concentrations at daytime (72-77 microg l(-1)). This difference in concentration during daytime and nighttime is ca. 100%. A similar diel cycle was observed for iron. An explanation for the arsenic diel cycles observed is the light induced photooxidation of As(III) and the elimination of As(V) due to its adsorption onto Fe precipitates during the daytime. Furthermore, the diel changes in arsenic speciation emphasize the importance of designing suitable sampling strategies in AMD systems.  相似文献   

20.
模拟酸雨对氧化锰吸附砷(Ⅲ)的解吸行为研究   总被引:1,自引:1,他引:0  
以合成的氧化锰为吸附剂研究了酸雨pH值、酸雨离子强度、解吸时间和解吸次数等因素对模拟酸雨解吸砷(Ⅲ)的影响。实验结果表明:氧化锰对砷(Ⅲ)吸附容量较大,等温平衡吸附量为:48.38 mg/g。模拟酸雨的pH值与离子强度对砷(Ⅲ)的解吸影响不大;解吸反应在90 min后基本达到平衡,平衡解吸量为2.69×10-2mg/g;随解吸次数的增加解吸量变化不大。氧化锰对砷(Ⅲ)的吸附主要是专性的配位吸附,吸附砷(Ⅲ)后难以被模拟酸雨解吸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号