首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L−1, concentrations of As (III) and As (V) were reduced from 2 mg L−1 to <5 μg L−1 in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94 ± 1.5 mg g−1 and 119 ± 2.6 mg g−1 at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.  相似文献   

2.

In the present study, bio-apatite/nZVI composite was synthesized through Fe(III) reduction with sodium borohydride and was fully characterized by FTIR, XRD, SEM–EDX, TEM, BET, BJH, and pHPZC. Column experiments were carried out for the removal of phosphate as a function of four operational parameters including initial phosphate concentration (100–200 mg L?1), initial solution pH (2–9), bed height (2–6 cm), and influent flow rate (2.5–7.5 mL min?1) using a response surface methodology (RSM) coupled with Box-Behnken design (BBD). 2D contour and 3D surface plots were employed to analyze the interactive effects of the four operating parameters on the column performance (e.g., uptake capacity and saturation time). According to ANOVA analysis, the influent flow rate and bed height are the most important factor on phosphate uptake capacity and saturation time, respectively. A quadratic polynomial model was excellently fitted to experimental data with a high coefficient of determination (>?0.96). The RSM-BBD model predicted maximum phosphate adsorption capacity of 85.71 mg g?1 with the desirability of 0.995 under the optimal conditions of 135.35 mg L?1, 2, 2 cm, and 7.5 mL min?1 for initial phosphate concentration, initial solution pH, bed height, and influent flow rate, respectively. The XRD analysis demonstrated that the reaction product between bio-apatite/nZVI composite and phosphate anions was Fe3 (PO4)2. 8H2O (vivianite). The suggested adsorbent can be effectively employed up to five fixed-bed adsorption–desorption cycles and was also implemented to adsorb phosphate from real samples.

  相似文献   

3.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

4.
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Qmax) for As(V) of 5923 μg g?1, approximately ten times greater than that of the untreated BC (552.0 μg g?1). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.  相似文献   

5.
Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5–100 μg L?1) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 μg g?1 dw after 7-days exposure at 100 μg L?1, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 μg L?1 during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems.  相似文献   

6.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

7.
This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle’s fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM1.0). The study found that the average PM1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m?3, while PM2.5 and PM10 concentration averages were approximately 19 μg m?3 and 37 μg m?3, respectively. It was also observed that average hourly concentration trends of PM1.0 and PM2.5 followed a “μ-shaped” pattern during transit hours.Experimental analyses revealed that the in-vehicle PM1.0 mass concentrations were higher inside diesel-fueled buses (10.0–71.0 μg m?3 with a mean of 31.8 μg m?3) as compared to biodiesel buses (3.3–33.5 μg m?3 with a mean of 15.3 μg m?3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM1.0 mass concentrations at the back of bus compartment (5.7–39.1 μg m?3 with a mean of 28.3 μg m?3) were higher than the concentrations in the front (5.7–25.9 μg m?3 with a mean of 21.9 μg m?3), and the mass concentrations inside the bus compartment were generally 30–70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m?3 to 243 μg m?3, with a median of 11.6 μg m?3.Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.  相似文献   

8.
Removal of arsenic from groundwater by granular titanium dioxide adsorbent   总被引:8,自引:0,他引:8  
Bang S  Patel M  Lippincott L  Meng X 《Chemosphere》2005,60(3):389-397
A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater.  相似文献   

9.
In an extensive environmental study, field samples, including soil, water, rice, vegetable, fish, human hair and urine, were collected at an abandoned tungsten mine in Shantou City, southern China. Results showed that arsenic (As) concentration in agricultural soils ranged from 3.5 to 935 mg kg−1 with the mean value of 129 mg kg−1. In addition, As concentration reached up to 325 μg L−1 in the groundwater, and the maximum As concentration in local food were 1.09, 2.38 and 0.60 mg kg−1 for brown rice, vegetable and fish samples, respectively, suggesting the local water resource and food have been severely contaminated with As. Health impact monitoring data revealed that As concentrations in hair and urine samples were up to 2.92 mg kg−1 and 164 μg L−1, respectively, indicating a potential health risk among the local residents. Effective measurements should be implemented to protect the local community from the As contamination in the environment.  相似文献   

10.

In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  相似文献   

11.
Hexavalent chromium [Cr(VI)] and arsenite [As(III)] are the most toxic forms of chromium and arsenic respectively, and reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) has great environmental implications as they affect toxicity and mobility of these toxic species. Bacillus firmus strain TE7, resistant to chromium and arsenic was isolated from tannery effluent. The strain exhibited ability to reduce Cr(VI) and oxidize As(III). It reduced 100 mg L?1 Cr(VI) within 60 h in nutrient broth and oxidized 150 mg L?1 As(III) within 10 h in minimal medium. It also completely reduced 15 mg L?1 Cr(VI) and oxidized 50 mg L?1 of As(III) simultaneously in minimal medium. To the best of our knowledge, this is the first bacterial strain showing simultaneous reduction of Cr(VI) and oxidation of As(III) and is a potential candidate for bioremediation of environments contaminated with these toxic metal species.  相似文献   

12.
The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L−1, which was also our limit of quantification. Concentrations up to 166 μg L−1 were found with a mean of 5 μg L−1 and median 1.6 μg L−1 were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L−1, and 44.2% of the samples exceeded the 2 μg L−1 German maximum acceptable concentrations recommended for infant food preparations.  相似文献   

13.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

14.
Nethaji S  Sivasamy A 《Chemosphere》2011,82(10):1367-1372
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from (KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg−1 min) by varying initial adsorbate concentration from 25 mg L−1 to 100 mg L−1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism.  相似文献   

15.
In this work, the photocatalytic degradation of aqueous microcystin-LR was studied using TiO2 and ZnO as photocatalysts. The process was optimised and characterised at the bench scale (200 mL); both semiconductors exhibited a high degradation capacity at reaction times of 1 min (degradation greater than 95%). The transient species that were observed indicate that the degradation occurs via the multiple hydroxylation and elimination of the labile peptide residues of the molecule. When photocatalysis was applied in a continuous treatment system (20–50 L), the photocatalytic process exhibited a high degradation efficiency, which resulted in residual microcystin-LR concentrations that were less than 1 μg L?1 (C0 = 5 μg L?1).  相似文献   

16.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   

17.
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles.  相似文献   

18.
Yang G  Ma L  Xu D  Li J  He T  Liu L  Jia H  Zhang Y  Chen Y  Chai Z 《Chemosphere》2012,87(8):845-850
Arsenic levels and speciation in the total suspended particles (TSPs) were quantitatively determined by high performance liquid chromatography on-line coupled with hydride generation atomic fluorescence spectrometry in Beijing, China from February 2009 to March 2011. The high TSP levels fluctuated between 0.07 and 0.79 mg m−3, with a mean level of 0.32 ± 0.17 mg m−3. The total arsenic concentrations ranged from 0.03 to 0.31 μg m−3 (mean: 0.13 ± 0.06 μg m−3) in Beijing‘s air. The concentrations of As(III) and As(V) ranged from 0.73 to 20 ng m−3 (mean: 4.7 ± 3.6 ng m−3) and from 14 to 2.5 × 102 ng m−3 (mean: 67 ± 35 ng m−3), respectively. As levels and speciation demonstrated relative higher levels in spring and autumn and lower values in summer and winter. As(V) accounted for 81-99% of the extractable species in the TSP samples which showed that As(V) was the major fraction of the extractable As. Organoarsenic species, monomethylarsonate (MMA) and dimethylarsinate (DMA) were not found in all samples. Higher values of enrichment factors demonstrated that arsenic in TSP mainly come from anthropogenic sources. High As and its species levels in air and respiratory exposure (0.30-0.84 μg d−1) attributed to higher excess cancer risk ((4.2 ± 2.0) × 10−4) for people in Beijing.  相似文献   

19.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

20.
One-year quantitative chemical data set consisting of water-soluble constituents (NH4+, Na+, K+, Mg2+, Ca2+, Cl?, NO3?, SO42? and HCO3?), crustal and trace elements (Al, Fe, Ca, Mg, K, Mn, Zn, Pb) and carbonaceous species (OC, EC) in ambient aerosols, collected over an urban site located in a high-dust semi-arid region of western India, reveals excellent linear relationship (r2 = 0.92; slope = 0.96 ± 0.05) between gravimetrically assessed TSP (total suspended particulates) and chemically analyzed aerosol mass. The TSP abundance ranging from 60 to 250 μg m?3, over a period of 12 months (January–December), is dominated by mineral dust (~70%); whereas contribution from sea-salts, anthropogenic and carbonaceous species exhibits significant temporal variability depending upon the wind regimes. The mineral dust is enriched in Ca, Mg and Fe with respect to upper continental crust (UCC); whereas Zn and Pb exhibit a characteristic anthropogenic source and high enrichment factors. The carbonaceous species show significant seasonality; with dominance of OC (range: 4.6–28 μg m?3; average: 12.8 μg m?3; SD: 6.8) and minor contribution from EC (range: 0.3–4.4 μg m?3; average: 2.4 μg m?3; SD: 1.4). The observed concentrations are significantly lower than those reported for the metro cities in South Asia but the OC/EC ratios (range: 4.3–35; average: 8.3; SD: 5.7) are significantly higher than the characteristic ratio (~2–4) reported for the urban atmosphere. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric chemistry and climate change. This study could also be useful in understanding the physical and optical aerosol properties documented from the same site and thus, in validating regional climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号