首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011–2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069–2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air–sea gas exchange and “bulk” (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year?1 for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year?1 for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.  相似文献   

2.
A wet–dry deposition sampler was located at The Scientific and Technological Research Council of Turkey-National Metrology Institute (TUBITAK-UME) station, and a bulk deposition sampler was placed at the Kad?ll? village to determine the atmospheric deposition flux of polycyclic aromatic hydrocarbons (PAHs) and pesticides (organochlorine and organophosphorus) in soluble fraction of samples in Kocaeli, Turkey. The 28 samples for each wet, dry, and total deposition were collected weekly from March 2006 to March 2007. Gas chromatography-tandem mass spectrometry was used to analyze the samples which were prepared by using solid-phase extraction (SPE) method. The sum of volume weighted mean of deposition fluxes was obtained as 7.43 μg m?2 day?1 for wet deposition, 0.28 μg m?2 day?1 for dry deposition and 0.54 μg m?2 day?1 for bulk deposition samples for PAHs and 9.88 μg m?2 day?1 for wet deposition, 4.49 μg m?2 day?1 for dry deposition, and 3.29 μg m?2 day?1 for bulk deposition samples for pesticides. While benzo(a)anthracene had the highest fluxes among PAH compounds for all types of depositions, guthion and phosphamidon had the highest deposition flux compared with the other pesticides. Benzo(ghi)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, and acenaphthene were not detected in any of the samples. Beta-HCH, gamma-HCH, and endrin aldehyde were the only compounds among 18 organochlorine pesticides to be detected in all deposition samples. The main sources of pesticides were the high number of greenhouses around the sampling stations. However, all of the organophosphorus pesticides were detected in all deposition samples. The pollution sources were identified as coal and natural gas combustion, petrogenic sources, and traffic for TUBITAK-UME station whereas coal and natural gas combustion and traffic were the main sources for Kad?ll? station by considering the results of factor analysis, ratios, and wind sector analysis.  相似文献   

3.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

4.
5.
Wet deposition fluxes of organochlorine pesticides (OCPs) were determined for rain samples collected in a coastal area of Turkey. Seventeen precipitation samples were collected over a 1-year period from 2008 to 2009. Rainwater was accumulated at the beginning of rain events using real time monitoring. Atmospheric concentrations were also measured in parallel with deposition samples. Both atmospheric concentrations and deposition fluxes were determined as particle and gas phases. The particle phase and dissolved phase deposition fluxes were 794.26?±?756.70 ngm?2 day?1 and 800.77?±?672.63 ngm?2 day?1, respectively. The washout ratios for OCP compounds were calculated separately for the particle and dissolved phases using the atmospheric concentrations and rain concentrations. The minimum washout ratio for the particle phase was 2339.47 for Endrin aldehyde, whereas the maximum washout ratio was 497593.34 for Methoxychlor. The maximum washout ratio for the dissolved phase was 247523.89 for Endosulfan beta, whereas the minimum washout ratio was 10169.69 for p,p′-DDT. The dry deposition velocities ranged from 0.01 to 1.67 cms?1. The partitioning of wet deposition between the particle and dissolved phases was 50 % in terms of total OCP deposition.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

7.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

8.
When applied to agricultural soils, phosphate fertilizers and the mineral or organic compounds present in solid and/or liquid waste may raise phosphorus (P) content and increase soil P saturation. The degree of phosphorus saturation (DPS) is a good indicator of potential P loss from agricultural soils. The purpose of this study was to calculate the DPS of samples from an Oxisol amended for 5 years with biosolids and mineral fertilizer. DPS was calculated based on P, iron, and aluminum extracted by ammonium oxalate and oxalic acid (DPSox) or by Mehlich-1 solution (DPSM1). Treatments included NPK mineral fertilization (175 kg ha?1 of P), B1?=?19.02 t ha?1 of biosolids (350 kg ha?1 of P), B2?=?38.17 t ha?1 of biosolids (703 kg ha?1 of P), B3?=?76.26 t ha–1 of biosolids (1,405 kg ha?1 of P), and a control (no P added). Water-extractable P (WEP) was also measured. Critical levels of DPSox and DPSM1 (21 and 24 %, respectively) were only achieved in the topsoil (0–0.1 m) at the highest biosolid dose. Concentration of WEP was positively correlated to DPSox and DPSM1. The DPSM1 method may be an alternative to DPSox for assessing the environmental risk of P loss from soil into surface runoff.  相似文献   

9.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   

10.
Polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxin and furan (PCDD/F) concentrations in the atmosphere were analysed using passive air samplers (PAS) close to the Rhine River between France and Germany. Collectors were placed in industrial, urban, rural and remote areas (Vosges Mountains) between March 2009 and August 2010, and the mean PCB concentrations (sum of 22 congeners) were 3.3, 3.9, 4.1 and 1.4 ng?PAS?1?day?1, respectively. Two events during the sampling period were observed in April 2009 and February–March 2010 with the highest PCB concentrations found in the industrial area (19.6 ng?PAS?1?day?1). PCDD/F level were measured during these periods, and the maximum concentration observed was from 37.5 fg?WHO?PAS?1?day?1  相似文献   

11.
The Sarno River is nicknamed “the most polluted river in Europe”. The main goal of this study is to enhance our knowledge on the Sarno River water and sediment quality and on its environmental impact on the gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) in order to become a useful assessment tool for the regional administrations. For these reasons, 32 selected polychlorinated biphenyls (PCBs) and aldrin, α-BHC, β-BHC, δ-BHC, γ-BHC (lindane), 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, dieldrin, endosulfan I, endosulfan II, endosulfan sulphate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide (isomer B) and methoxychlor were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total concentrations of PCBs ranged from 1.4 to 24.9 ng L?1 in water (sum of DP and SPM) and from 1.01 to 42.54 ng g?1 in sediment samples. The concentrations of total organochlorine pesticides (OCPs) obtained in water (sum of DP and SPM) ranged from 0.54 to 7.32 ng L?1 and from 0.08 to 5.99 ng g?1 in sediment samples. Contaminant discharges of PCBs and OCPs into the sea were calculated in about 1,247 g day?1 (948 g day?1 of PCBs and 326 g day?1 of OCPs), showing that this river should account as one of the main contribution sources of PCBs and OCPs to the Tyrrhenian Sea.  相似文献   

12.
Lemaire J  Croze V  Maier J  Simonnot MO 《Chemosphere》2011,84(9):1181-1187
An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fenton’s reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe2+]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg−1 with permanganate and 1.8 g kg−1 with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.  相似文献   

13.
Twenty-five strains of filamentous fungi, encompassing 14 different species and belonging mainly to Ascomycetes, were tested for their ability to degrade benzo[a]pyrene (BaP) in mineral liquid medium. The most performing isolates for BaP degradation (200 mg?l?1) in mineral medium were Cladosporium sphaerospermum with 29 % BaP degradation, i.e., 82.8 μg BaP degraded per day (day?1), Paecilomyces lilacinus with 20.5 % BaP degradation, i.e., 58.5 μg BaP day?1, and Verticillium insectorum with 22.3 % BaP degradation, i.e., 64.3 μg BaP day?1, after only 7 days of incubation. Four variables, e.g., biomass growth on hexadecane and glucose, BaP solubilization, activities of extracellular- and mycelium-associated peroxidase, and polyethylene glycol degradation, were also studied as selective criteria presumed to be involved in BaP degradation. Among these variables, the tests based on polyethylene glycol degradation and on fungal growth on hexadecane and glucose seemed to be the both pertinent criteria for setting apart isolates competent in BaP degradation, suggesting the occurrence of different mechanisms presumed to be involved in pollutant degradation among the studied micromycetes.  相似文献   

14.
Aliphatic and aromatic hydrocarbon fluxes were measured in time series sediment trap samples at 200 m and at 1000 m depths in the open Northwestern Mediterranean Sea, from December 2000 to July 2002. Averaged fluxes of n-alkanes, UCM and T-PAH35 were 2.96 ± 2.60 μg m−2 d−1, 64 ± 60 μg m−2 d−1 and 0.68 ± 0.59 μg m−2 d−1, respectively. Molecular compositions of both hydrocarbon classes showed a contamination in petrogenic hydrocarbons well above the background levels of such an open site, whereas pyrolytic hydrocarbons stand in the range of other open Mediterranean locations. Fluxes displayed ample interannual and seasonal variabilities, mainly related to mass flux variation while concentration evolutions trigger secondary changes in pollutant fluxes. High lithogenic flux events exported particles with a larger pollutant load than biogenic particles formed during the spring bloom and during the summer. Sinking hydrocarbons were efficiently transported from 200 m to 1000 m.  相似文献   

15.
Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km?2 year?1 in the Changjiang River basin, 107 to 223 kg N km?2 year?1 in the Huanghe River basin, and 412 to 1,219 kg N km?2 year?1 in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980–2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.  相似文献   

16.
As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m−3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m−3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2–1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m−3 and a maximum value of ∼550 μg m−3 were found. On average, the participating volunteers drove their car for 45 min day−1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the car during the 14-day sampling period has only a small effect on the personal exposure level.  相似文献   

17.
The aim of this work was to assess dietary risk resulting from consumption of polycyclic aromatic hydrocarbons (PAHs) with tea infusions. To this end, levels of 28 PAHs in black, green, red and white teas available on the Polish retail market have been assessed. Profiles and correlation between concentrations of individual PAHs have been identified. A model study on transfer of PAHs from tea leaves into tea preparations has been conducted. Relatively high concentrations of 28 evaluated PAHs have been found in 58 tested samples of black, green, red and white teas sampled on the Polish retail market. Total concentration ∑28PAH ranged from 57 to 696 µg kg?1 with mean 258 µg kg?1 (dry tea leaves). The most mature tea leaves fermented to a small degree contained relatively the highest PAH levels among all four tested tea types. Relatively low PAH transfer rates into tea infusions and limited volumes of the consumed tea keep the risks associated with PAH dietary intake at a safely low level.

The worst-case scenario dietary intake values were 7.62/0.82/0.097 ng kg?1 b.w. day?1 (estimated on the basis of the maximum found concentrations 696/113/23 µg kg?1 and maximum observed transfer rates 24/16/9%) for ∑28PAH/∑PAH4/B[a]P, respectively. MOE values calculated using the above worst case estimates exceeded 700,000 and 400,000 (BMDL10 0.07 and 0.34 mg kg?1 b.w. day?1) for B[a]P and PAH4, respectively. Both B[a]P and PAH4 concentrations may be used as indicators of total PAH concentration in tea leaves; PAH4 slightly better fits low molecular weight PAHs. Several correlations between various PAHs/groups of PAHs have been identified, the strongest one (R2 = 0.92) between PAH4 and EU PAH 15+1.  相似文献   

18.
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m?3 day?1, for 2,4-D, and 12.8 to 59.3 g m?3 day?1 for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56?±?0.44; picloram, 94.58?±?2.62; and chemical oxygen demand (COD), 89.42?±?3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day?1, corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.  相似文献   

19.
This study compares the performances of fern and plastic chips as packing media for the biofiltration of a styrene-laden waste gas stream emitted in a plant for the manufacture of plastic door plates. Fern chips (with a specific surface area of 1090 m2 m?3) and plastic chips (with a specific surface area of 610 m2 m?3) were packed into a pilot-scale biotrickling filter with a total medium volume of 50 L for the performance test. Field waste gas with styrene concentrations in the range of 161–2390 mg Am?3 at 28–30 °C) was introduced to the bed and a fixed empty-bed retention time (EBRT) of 21 sec, a volumetric gas flow rate of 8.57 m3 hr?1, and superficial gas velocity of 53.6 m hr?1 were maintained throughout the experimental period. Nutrients containing metal salts, nitrogen, phosphorus, and milk were supplemented to the filters for maintaining the microbial activities. Results reveal that the biotrickling filter developed in this study had the highest styrene monomer (SM) elimination capacities (170 g m?3 hr?1 for fern-chip packing and 300 g m?3 hr?1 for plastic-chip packing) among those cited in the literature. The plastic medium is a favorable substitute for endangered fern chips. The thermal-setting nature of plastic chips limits their recycle and reuse as raw materials, and the study provides an opportunity for the utilization of the materials.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration has a great potential for the degradation of gas-borne styrene and total hydrocarbon (THC) removal efficiency of around 80%. The objective of this research was to compare the performances of fern chips and a kind of plastic chips as packing media for biofiltration of the styrene-laden waste gas stream emitted from cutting operations of stripes of premixed unsaturated polyester (UP) and styrene paste before hot-pressing operations for making plastic door plates. From a practical point of view, the plastic medium can be a good substitute medium for fern chips, which has been declared as a protected plant. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

20.
A soil contaminated with a B20 biodiesel blend (20 % biodiesel, 80 % diesel) has been treated by modified Fenton process with or without chelant addition. All experiments were conducted without pH adjustment. The reagents used were as follows: hydrogen peroxide as oxidant (400–4,000 mmol L?1), ferric ion as catalyst (5–20 mmol L?1), and trisodium citrate (50 mmol L?1) as chelating agent. Soil was spiked at two different pollutant concentrations (1,000–10,000 mg diesel kg?1 soil). Higher total petroleum hydrocarbon (TPH) removal efficiencies were obtained (up to 75 %) after the treatment in the absence of the chelant due to the low pH obtained in this case. In the presence of chelant, the TPH conversion obtained was lower because both higher pH is obtained and chelant competes with diesel for the oxidant. On the other hand, at neutral pH, the lifetime of the oxidant was increased. Fatty acid methyl esters (FAMEs) are easier to remove than diesel aliphatic hydrocarbons from the blend. An important decrease of the aqueous phase toxicity was observed after the modified Fenton reaction, supporting that nontoxic by-products were released to the aqueous phase during the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号