首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
废旧计算机CRT监视器的管理和资源化技术   总被引:1,自引:0,他引:1  
分析了废旧计算机CRT监视器的材料组成 ,并且阐明了它对环境和人体健康的潜在危害 ,同时比较了国内外相关管理现状 ,总结了目前已有的资源化技术 ,主要是拆解技术 ,并且介绍了目前国内外的资源化实践 ,并提出有关建议。  相似文献   

2.
为了解决陕西神木大柳塔洗煤厂煤泥水的快速沉降和洗水循环再利用 ,在深入研究原煤泥水处理工艺技术效能的基础上 ,研究和发展了一种新型高效、经济的煤泥水处理工艺技术 ,合成了一种快速沉降剂。经过反复试验研究 ,使得原煤泥水系统有了极大改善 ,实现了洗水闭路循环和煤泥厂内回收 ,降低了药耗 ,缩短了反应时间 ,达到了快速沉降的目的。  相似文献   

3.
生态工业园区是实现生态工业和工业生态学的重要途径 ,代表了未来工业生态系统发展方向。本文从生态工业园区的概念出发 ,分析了生态工业园区的基本特征与功能 ,阐述了生态工业园区的类型及其建设的重点内容 ,介绍了生态工业园区建设实践 ,提出了生态工业园区建设的对策与措施  相似文献   

4.
原油挥发气排空的危害及对策研究   总被引:2,自引:0,他引:2  
大量的原油挥发气一直都被排放到大气中,既浪费了能源,也污染了环境,本文在分析了排空的巨大危害之后,对回收方法进行了探讨,提出了利用匹配式多级喷射器进行回收的有效方法.  相似文献   

5.
利用城市污水处理厂污泥生产微生物肥料的研究   总被引:2,自引:0,他引:2  
研究了城市污水处理厂污泥的资源化问题,讨论了利用污泥生产微生物肥料的工艺,设计参数,设备选择了产品应用效果等问题,并提出了本研究的发展前景。  相似文献   

6.
地坑压缩式城市生活垃圾转运站的设计与应用   总被引:1,自引:0,他引:1  
介绍了一种具有压缩功能,并与吊装设备配套使用的城市生活垃圾转运站,具有操作方便,减少工人劳动强度等特点,通过压缩机的压缩增大了箱内垃圾比重,提高了垃圾的清理及运输效率,同以往相比运输次数减少半数以上,大大提高了工作效率,有效的节省了人力和物力资源.  相似文献   

7.
积极发展农村沼气工程   总被引:1,自引:0,他引:1  
沼气是一种清洁卫生的能源。通过沼气这个中心环节,使农业废弃物得到充分利用。本工程以较小的投入获得了较多的产出,既提高了经济效益,又有利于改善生态环境,保护农业生态平衡。鄞县甲村乡上李家村沼气工程的建设,不仅改变了农村燃料结构,为农村提供了清洁卫生的新能源,还减轻了农业废弃物对环境的污染,促进农业废弃物的资源化利用,为发展生态农业创造了条件。  相似文献   

8.
介绍了一种具有压缩功能,并与吊装设备配套使用的城市生活垃圾转运站,具有操作方便,减少工人劳动强度等特点,通过压缩机的压缩增大了箱内垃圾比重,提高了垃圾的清理及运输效率,同以往相比运输次数减少半数以上,大大提高了工作效率,有效的节省了人力和物力资源.  相似文献   

9.
正分析了火电厂项目主要的地下水污染源、污染途径,提出了优化选址、重点区域防渗等措施,模拟分析了防渗效果,提出了地下水的预警、监控及修复方案,为最大限度降低火电厂地下水环境影响提供了系统的设计方案。  相似文献   

10.
为了解决罗氏沼虾养殖水体蓝藻泛滥、危害养殖、污染周边水环境的问题,建设了深水井循环水处理示范工程,对工程运行进行了跟踪测定。结果表明,通过深水井循环处理后,蓝藻不能再漂浮于水面生长繁殖,而是沉淀到水底无光区衰亡,从而控制了蓝藻的繁殖。与对照塘相比,虾塘藻类叶绿素a浓度减少了69%,藻细胞总数削减了92%,消除了蓝藻泛滥现象,剩余藻类主要为颤藻、绿藻,化学需氧量降低了55%,总磷降低了46%,总氮降低了56%。  相似文献   

11.
In this study, cadmium (II), lead (II), copper (II) and zinc (II) were determined in Polygonum thunbergii and soil from the Mankyung River watershed, Korea. Soil samples contained detectable lead (<17.5 g g(-1)), copper (<8.4 g g(-1)) and zinc (<24.5 g g(-1)), whereas cadmium was undetectable. Whole plants of P. thunbergii contained detectable lead (<320.8 g g(-1)), copper (<863.2 g g(-1)) and zinc (<2427.3 g g(-1)), whereas cadmium was detectable only in the stem (<7.4 g g(-1)) and root (<10.1 g g(-1)). Whole plant concentrations were very different for each metal, particularly in the case of zinc. The mean content of heavy metal in the whole plants increased in the order of cadmium (8.5 g g(-1))相似文献   

12.
Eutrophication has decreased the O(2) content and increased the NH(4)(+) availability in freshwaters. These changes may affect carbon and nitrogen transformation processes and the production of CH(4) and N(2)O, which are important greenhouse gases. We studied release of CH(4) and N(2)O from a eutrophic lake sediment under varying O(2) and NH(4)(+) conditions. Intact sediment cores were incubated in a laboratory microcosm with a continuous anoxic or oxic water flows containing 0, 50, 500, 5,000, or 15000 microM NH(4)(+). With the anoxic flow, the sediment released CH(4), up to 7.9 mmol m(-2)d(-1). With the oxic flow, the CH(4) emissions were small indicating limited CH(4) production and/or effective CH(4) oxidation. Addition of NH(4)(+) did not affect sediment CH(4) release, evidence that the CH(4) oxidizing bacteria were not disturbed by the extra NH(4)(+). The release of N(2)O from the sediment was highest, up to 7.6 micromol m(-2)d(-1), with the oxic flow without NH(4)(+) addition. Oxygen was the key factor regulating the production of NO(3)(-), which enabled denitrification and production of N(2)O. However, the highest NH(4)(+) addition increased nitrification and associated O(2) consumption causing a decrease in sediment O(2) content and in accumulation of NO(3)(-) and N(2)O, which were effectively reduced to N(2) in denitrification. In summary, sediment CH(4) and N(2)O dynamics are regulated more by the availability of O(2) than extra NH(4)(+). Anoxia in eutrophic lakes favouring the CH(4) production, is the major contributor to the atmospheric consequences of water eutrophication.  相似文献   

13.
Three blends formed by: (i) food processing waste (CP(FP)), (ii) waste water sewage sludge (CP(WW)), and (iii) their mixture (CP(FP+WW)), blended with tree pruning as bulking agent, were composted over 3 months. During composting the blends were monitored for the main physical-chemical characteristics: temperature, oxygen saturation level (O(2)%), pH, total and volatile solids, total organic carbon, and organic nitrogen (N(org)). In addition to the main parameters, the dissolved organic carbon (DOC), the inorganic nitrogen and the Oxygen Uptake Rate (OUR) were monitored. All the mixtures easily reached a peak temperature around 70°C, related to the lowest O(2)%. After 90 d, CP(FP), CP(FP+WW), and CP(WW) showed an organic matter mineralization of 43%, 35% and 33%, respectively; CP(FP) fitted an exponential model while both CP(FP+WW), and CP(WW) fitted a logistic model. During composting an OUR reduction of 79%, 78% and 73% was registered in CP(FP), CP(FP+WW), and CP(WW), respectively; the OUR successfully fitted the adopted exponential model and well reflected the stabilization process in time. The N(org) recovery at the end of the process was positive only in CP(WW) (11.6%). The DOC significantly decreased during the composting process but did not successfully fit any model. The mineral nitrogen did not follow the typical pattern with NH(4)(+) disappearance and NO(3)(-) accumulation. Strong NO(3)(-) losses were evident in all blends, while NH(4)(+) accumulations were detectable only in CP(FP), and CP(FP+WW). The NH(4)(+)/NO(3)(-) ratio did not satisfactorily reflect the composting process over time. The comparison of the first order (exponential) and logistic (sigmoidal) models applied to the OUR and OM course highlights the role of mineral nitrogen as limiting factor during composting of the more stabilized sludge.  相似文献   

14.
Benzo(a)pyrene [B(a)P] air levels were measured in Florence (Italy) in the period 1992-2001. For the period 1999-2000 seven polycyclic aromatic hydrocarbons (PAH) (benzo(a)anthracene, crysene, benzo(a)pyrene (B(a)P), benzo(b)fluoranthene (B(b)F), benzo(k)fluoranthene, dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP)), were measured in the air in four different sites (one with heavy traffic (A), one in a park (B), one in a residential area (C) and one in a hill area (D)). B(a)P levels were elevated in 1992-1998 (maximum average value of winter months: 5.8 ng/ m3) but a decreasing trend was observed in the following years, probably due to improvement in vehicle emissions. The sum of PAH in the air in the period 1999-2000 was about one order of magnitude lower in the hill site (D) relative to the urban sites, and residential areas (B and C) had values 2.5-3 times lower compared to site A with a heavy traffic. PAH concentrations decreased in the warmer seasons of 2000 in all sites. A negative correlation was found between PAH levels and ozone. A positive correlation with carbon monoxide (CO) (r = 0.862, P < 0.001) and low B(a)P/BGP ratios, ranging from 0.44 to 0.51, indicated that vehicular traffic was the major PAH source in all monitored sites. Using B(a)P(TEF) values (toxic equivalency factors) for evaluating the biological activity of PAH, we found that the highest PAH contributors in terms of potential air carcinogenic activity were B(a)P and DBA. Therefore, in addition to B(a)P, DBA concentration should be considered in the evaluation of air quality in terms of PAH contamination.  相似文献   

15.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   

16.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

17.
Lee JY  Kim SB  Hong SC 《Chemosphere》2003,50(8):1115-1122
Natural manganese ore (NMO) catalysts were characterized and tested in the selective catalytic oxidation of ammonia to nitrogen oxides under dilute conditions. Also, the oxidation of ammonia (NH(3)) was carried out using pure MnO(2), Mn(2)O(3) for comparing with the activity. It is found that the activity of NMO was similar to that of MnO(2) at low temperature below 150 degrees C but above this temperature, the activity of these catalysts showed the difference. In the course of NH(3) oxidation, N(2), NO, N(2)O and H(2)O were produced. But the quantity of NO(2) produced in this experiment was negligible. At temperature below 250 degrees C, selectivity into N(2) from NH(3) oxidation was in the order, NMO > MnO(2) > Mn(2)O(3). This is the reverse of activity of these manganese oxides. Also the characterization of NH(3) oxidation was proposed and supported by the effect of space velocity, inlet O(2) and NH(3) concentration. The increase of space velocity remarkably influenced not only the conversion but also selectivity into N(2). The higher the reaction temperature was, the higher the effect of inlet O(2) and NH(3) concentration on the reaction rate was. By introducing NO during NH(3) oxidation reaction, the possibility of NMO as selective catalytic reduction catalyst at low temperature was studied and showed positive results.  相似文献   

18.
This study consisted of a site characterization followed by biomonitoring the zebra mussel, Dreissena polymorpha, at the Times Beach Confined Disposal Facility (CDF), located in Buffalo, New York. Concentrations of selected contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals -arsenic (As), chromium (Cr), barium (Ba), mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se) and silver (Ag)-were at or below detection limits in the water column. Sediment contaminant concentrations, recorded as dry weight, were as high as 549 mg/kg for total PAHs, 9 mg/kg for PCB Aroclor 1248 and 54, 99, 6, 355, 637 and 16 mg/kg for the metals As, Ba, Cd, Cr, Pb and Hg, respectively. To predict contaminant bioavailability, elutriate and whole sediment toxicity tests were performed utilizing the cladoceran, Daphnia magna. Whole sediment tests indicated significant impact. Control survival was 84%, while sediment treatment had survival ranging from 1 to 7%. Mean control reproduction was 86.8 neonates, whereas treatment reproduction ranged from 1.4 to 9.0. Zebra mussels placed both in the water column (Upper) and at the sediment level (Lower) survived the 34-day exposure. Contaminants that significantly accumulated in zebra mussel tissue (wet wt mg/kg) were total PAHs (6.58), fluoranthene (1.23), pyrene (1.08), chrysene (0.98), benzo(a)anthracene (0.60), PCB Aroclor 1248 (1.64), As (0.97), Cr (2.87) and Ba (7.00). Accumulation of these contaminants in zebra mussel tissue represent a potentially realistic hazard to organisms (i.e. fish and birds) that feed on them.  相似文献   

19.
Adani F  Ricca G 《Chemosphere》2004,56(1):13-22
Alkali soluble (humic acid-like material) (HA-like) (yield of 132 gkgdm(-1)) and the unhydrolized-alkali soluble (core-humic acid-like material) (core-HA-like) (yield of 33.4 gkgdm(-1)) fractions were extracted from maize plants and characterized by C and N determinations, DRIFT, and 1H and 13C-NMR spectroscopy. Fresh plants were subsequently incubated for 6 months in an artificial mineral soil, and the HA-like and core-HA-like trends were monitored quantitatively (C fraction content) and qualitatively (spectroscopic approach) in order to study their contribution to the formation of soil humic acid. During incubation the HAC-like partially degraded (loss of 320 gkgHAC(-1)) and partially formed new fulvic-like acids (160 gkgHAC(-1)). On the contrary, the stable fraction of HAC, the core-HAC-like, was maintained (loss of 153 kgcore-HAC(-1)), representing, after incubation, 846 gkg(-1) of the initial core-HAC-like content. The core-HA-like fraction is composed of lignin residues, polysaccharides, lipids and proteins, probably structured into a well-defined network, i.e. the plant cell wall.  相似文献   

20.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号