首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

2.
成渝地区空气重污染天气形势分析   总被引:4,自引:3,他引:1  
利用Lamb-Jenkinson客观环流分型法,对成渝地区及4个子区域2014—2018年高度场和海平面气压场进行了环流分型,并探讨了环流型与空气污染的关系.结果表明,成渝地区海平面气压场的最高频率环流型为东北气流型(NE),850 hPa上为高压型(A),500 hPa上为平直西风气流型(W).综合来看,成渝地区易发生污染天气形势是:高空500 hPa为平直西风(W),地面和850 hPa上为低压(C)或东南气流型(SE);易出现优良天气的环流形势是:高空500 hPa为平直西风(W),地面和850 hPa上为高压(A)或东北气流型(NE).对个例进行分析后发现,当地面为气旋或东南气流,同时风速较小时,不利于污染物的水平扩散;若高空为弱脊控制或者为槽后西北气流,则在下沉气流的作用下,不利于污染的垂直扩散,地面污染进一步加重.  相似文献   

3.
长江三角洲地区大气污染物水平输送场特征分析   总被引:24,自引:3,他引:21  
以长江三角洲地区为研究对象,探讨城市群环境污染规律.利用区域中尺度大气数值预报模式MM5模拟2004年1,4,7和10月长江三角洲地区的气象场.结果表明:冬季,长江三角洲地区近地面及500 m高度层主要为西北风控制,输送气流主要来自西部内陆地区;春季,盛行东南风和偏东风,存在明显的东南向西北方向的输送气流;夏季,则以偏南输送气流为主,杭州湾地区海面向内陆方向以及太湖湖面风速较大,输送扩散能力较强;秋季则转为东北风,近地面杭州湾以北盛行北风,以南主要受海面东北风的影响.结合HYSPLIT-4三维轨迹模式计算分析该地区典型污染过程时污染物的输送气流轨迹,证实了污染过程伴随500 m高度处东北主频气流的“外源”输入现象.   相似文献   

4.
基于255 m气象塔天津地区污染天气高空风特征研究   总被引:4,自引:1,他引:3  
基于2016年4月—2017年3月天津地区地面、255 m气象塔和风廓线监测数据,结合数值模拟,研究天津污染天气分析中高空风特征,以期进一步提高污染天气预报准确率.结果表明:高空风速和风向分析对污染天气趋势判断有重要作用,如冠层以上高度风速、300~1500 m风向对PM2.5污染程度的指示效果好于近地面同类数据;在选取高空风速指标时,应尽量避免边界层顶附近高度风速数据选取,如使用300 m和600 m风速和作为指标要好于300、600和900 m风速和作为指标.而其是否有利于污染扩散判断的临界阈值为10~15 m·s-1,小于10 m·s-1时水平扩散条件不利于污染物扩散,大于15 m·s-1时有利于污染物扩散.分析高空风向时,需要考虑输送高度和Ekman螺线的影响,与地面不同,300~1500 m高空风分析时,有利于出现污染天气的风向为西风、西南风和南风,而地面仅为南风和西南风;当1500 m高度呈现东风、偏东风和东南风时,天津地区受来自渤海的气流影响明显,污染气象条件有利于污染物扩散,空气质量以良好为主.  相似文献   

5.
运用WRF-CMAQ模式对2016年1月1日~1月7日青岛市的PM_(2.5)重污染天气进行了模拟研究,分析了青岛市PM_(2.5)重污染形成、持续和清除过程的主要影响因素.与观测对比表明,模式能够较好地模拟出青岛市主要气象要素和近地面PM_(2.5)浓度的变化特征.在重污染形成期,持续的西南气流将山东南部、安徽、江苏等地PM_(2.5)及其前体物传输至青岛地区;逆温层的出现及大气边界层高度的降低使得输送至青岛地区的PM_(2.5)在近地面积累,浓度升高.由山东西南部、安徽北部、河南东部等地传输至山东西北部和京津冀地区的PM_(2.5)及其前体物,在重污染持续期沿近地面传输至青岛,加之液相化学过程生成了大量的二次气溶胶,导致PM_(2.5)浓度一直维持在200μg/m~3以上.重污染清除期,风速加大,水平传输作用加强,高浓度的PM_(2.5)污染带向下风向转移.区域传输对此次青岛市PM_(2.5)重污染事件具有重要贡献,3个时期的贡献率分别为87.0%、68.5%和57.6%.  相似文献   

6.
在北京地区,有一类高污染产生在850 h Pa以上为偏北风的背景下.利用气象观测资料、NCEP再分析资料和地面PM2.5浓度监测结果分析了环境气象条件在这类污染过程形成中的作用.结果表明,在污染物浓度逐渐升高的过程中,环境大气并不总是处在层结稳定状态,有利于污染物累积的气象条件来自垂直运动和散度在垂直方向上的"分层"结构.从地面到对流层中层,垂直速度呈上升-下沉-上升的分布,而且散度呈辐合-辐散-辐合的结构.近地层的辐合导致周边的污染物向本地汇集,上升运动则将它们送向空中.但是,叠置在其上空的、长时间维持的下沉气流层却阻止了污染物继续向上运动,从而导致近地面层的污染浓度不断升高.垂直运动出现"分层"是由于高空偏北风并没有侵入到边界层内,近地层仍然维持偏南风或小风,冷空气太弱或者没有冷空气活动是高空偏北风不能到达近地层的主要原因.而下沉气流层的形成则与其上空的空气辐合有关,该辐合层源自偏北气流中的风速脉动.因此,环境大气动力作用是高空偏北气流型空气污染过程形成的关键机制.关注对流层中下层温度24 h变化、垂直速度和散度的垂直分布将有助于提高此类高污染过程的诊断分析和预报能力.  相似文献   

7.
吴进  李琛  马志强  孙兆彬  朱晓婉  董璠 《环境科学》2020,41(11):4864-4873
对流层臭氧作为典型二次污染物已成为北京春夏季首要污染物,气象因素是影响其浓度变化的主要因子之一.本研究基于2008~2017年大气成分和气象观测数据,利用Lamb-Jenkinson天气分型法结合Mann-Whitney U检验方法将影响北京地区天气型分为6类,其中SWW和C型上甸子臭氧浓度均值和极值分别最高,在4~9月出现频率最高,合计出现47.4%,并通过多元逐步回归方程确定两种型的主要贡献权重.SWW和C型下54%盛行西南风,新排放的污染物和二次老化气团经西南气流持续输送,850 hPa附近出现垂直速度零层,水平和垂直气象条件均有利于臭氧的输送、生成和聚积;AN和ESN型下64.7%盛行东北风或北风,气团来源清洁,1000 hPa以上盛行一致的下沉运动和气流辐散,新排放的污染物也能很快被稀释扩散,臭氧浓度处于较低值.以NW型2015年5月3日为例,虽然地面盛行西北气流,来源清洁,但大气通过垂直下沉运动将边界层以上的高浓度残留臭氧向近地面输送,导致某些天数中出现臭氧浓度高值.  相似文献   

8.
利用2017~2019年晋城市和长治市冬季PM2.5逐时浓度资料、地面风场数据等,结合HYSPLIT轨迹模型和中尺度数值模式WRFV4.2分析了晋东南地区冬季PM2.5污染的特征和传输特点.结果表明,晋城市冬季PM2.5污染程度高于长治市.受地形影响,晋城市地面盛行偏南风、偏北风和西北风,污染方向主要为偏南风和偏北风;长治市近地面盛行偏南风,该风向污染频率最高.影响晋城市和长治市污染的潜在源区主要分布在偏西、东北和东南方向,偏西气流来自陕西省中部,东北气流来自河北省西南部,东南气流来自河南省中东部.污染经过晋东南地区主要影响山西省中南部和北京南部.通过数值模拟流场,结合潜在源区和影响区域的分析结果,在均压场或高压后部的天气形势下,晋东南地区污染输送路径包括来自东北方向(河北省西南部一带)的气流,沿长治市东北部的滏口陉向晋东南地区输送污染物及沿太行山东麓向南在晋豫交界处的太行陉发生转折向晋东南地区输送污染物;来自东南方向(河南北部及东部)的气流输送和来自偏西方向(陕西中南部)的气流输送.污染物经过晋东南地区向北输送至山西省中南部,部分经过山西省中东部的井陉输送至北京南部.  相似文献   

9.
在离地面1.5m、18m和52m三个高度,对SO_2、SO_4、颗粒物和NH_3,进行了20多天的同步观测。发现在18m以下,浓度随高度增高而增大;在18m~52m之间,浓度随高度升高而递减的规律。利用浓度的垂直梯度值,还计算了SO_2的干沉降系数。分析浓度逐日变化和多种气象参数关系可知,近地面风速仍然是影响浓度变化的主要参数;近地层R_1、温度垂直梯度、底层逆温层高度、地面气压和相对温度也与浓度有较密切的关系;各层浓度之间的关系,则主要受风速垂直切变的影响。  相似文献   

10.
地形和逆温层对兰州市污染物输送的影响   总被引:24,自引:0,他引:24       下载免费PDF全文
结合兰州市地理和气候环境,给出了兰州山谷Froude数的范围.并根据气流到达山体时 爬升或侧绕的临界Froude数大约为1的基本认识,揭示了山体高度、逆温层强度和地面水平风 速对Froude数和水平输送的影响以及在几个假定的山体高度下Froude数随逆温强度和地面水 平风速的动态分布特征.同时,说明了污染物临界高度和烟囱临界高度对山体高度、逆温层强 度和地面水平风速的依赖关系.通过敏感性试验,发现了对气流输送有重要影响的逆温强度和 山体高度及水平风速的关键值.  相似文献   

11.
ThecharactersfortheboundarylayerandmechanismofacidrainformationintheQingdaoarea,ChinaLiuBaozhang,LiJinlongenterofEnvironmenta...  相似文献   

12.
垂直切变风场中大气污染物输送扩散的分层模式   总被引:1,自引:0,他引:1  
应用分层处理法,将大气边界层中水平流场有明显转折的层次定为分界层,建立了污染物输送扩散的分层模式。研究结果表明,当上、下层流场一致时,本模式的解与传统模式基本一致。而当上、下层风向不一致时,污染物的横向散布范围被加大,地面污染轴线将随着距离增加逐渐向下层风的下风向偏移。  相似文献   

13.
为研究河谷型城市地形及其引起的风场和污染物扩散的复杂问题,利用CFD(计算流体力学)方法和复杂地形网格生成技术,建立河谷型城市风场及大气污染分布的数值仿真模型,实现CFD方法在复杂地形空气运动和污染物扩散方面的应用.分别使用LES(large eddy simulation)模型和mixture模型研究兰州市地面风场特征和污染物扩散形态,计算得到的污染物分布结果与实测结果分布一致.结果表明:复杂地形对空气运动的影响很大,如风速因山体屏障作用会呈现带状分布特征,山体后侧易出现弱风区域;同时,风场会密切影响污染物扩散,决定了污染物扩散形态,如幅散能够影响污染物扩散范围及污染水平.而给定西北风条件下,如地面以上10 m、风速为5 m/s、不受地形阻挡情况下,工业区污染物浓度被稀释10倍,约扩散2.2 km;山体阻挡会抑制污染物纵向扩散,表现在山体阻挡情况下污染物稀释100倍时的扩散长度约为相对平坦区域的1/3.此外,不同的入口风向会引起空气运动与山体相互作用发生变化,进而会使得地面风速、局部风场存在差异,造成污染物扩散及分布形态差异.研究显示,CFD方法可行,模型可靠,可以用来研究地形对风场和污染物扩散的影响.   相似文献   

14.
动态风场及交通流量下街道峡谷内污染物扩散模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
王乐  张云伟  顾兆林 《中国环境科学》2012,32(12):2161-2167
根据现场实测数据,应用标准k-ε模型研究了动态风场及交通流量下三维街道峡谷内的污染物扩散规律,数值模拟利用CFD软件FLUENT,其中动态风场和车流量变化信息通过用户自定义编程实现.结果发现,动态风场下空气在街道内部不断经历膨胀和压缩的过程,街道峡谷内部流场形态时刻都在变化;当风速由大变小时,空气膨胀出街谷,流型呈近似椭圆形分布;当风速由小变大时,空气压缩在街谷内部,流型呈近似圆形分布.风速的不断变化引起街谷内、外大气的压缩和膨胀过程,这种过程能够改善街谷内污染物的扩散情况.背风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低17.7%;迎风面行人高度处,动态来流下的平均污染物浓度要比定常来流下低27.1%.动态环境下污染物浓度的分布和峰值由风场和车流量变化共同决定.  相似文献   

15.
2013年1月河北省中南部严重污染的气象条件及成因分析   总被引:24,自引:2,他引:22  
年1月河北省中南部出现了长时间、大范围的雾霾天气,大气污染严重. 利用河北省AQI(逐日空气质量指数)、气象常规观测数据及NCEP(美国国家环境预报中心)1°×1°格距再分析资料,对此次严重污染事件的气象条件、大气环境背景和形成机制进行了研究. 结果表明:①2013年1月河北省中南部地面气象要素表现异常,与历史同期相比,平均气温低1~2℃、相对湿度高15%以上、日照时数少40%以上、降水日数多但量级小. 地面风力较小且多风向、风速的辐合线,地面散度场上河北省中南部为明显的辐合区,致使水汽和污染物汇聚不易扩散,导致雾霾天气异常偏多,大气污染严重. ②边界层高湿区中丰富的水汽与污染物互为载体,强逆温层结、大气低层的干暖盖、边界层下沉运动等均使水汽和污染物存留在近地层且不易向高空扩散;同时,稳定的大气环流形势为雾霾天气和严重污染提供了有利的大气环境场. ③河北省中南部特殊的地理条件也是雾霾和污染持续的一个重要原因. 低空稳定的偏西气流越过太行山后在山麓东侧下沉,在华北平原地区易形成地面辐合线,从而加剧了近地层水汽和污染物的汇聚.   相似文献   

16.
泰安市冬季一次严重空气污染过程分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为揭示泰安市空气污染形成原因,选取泰安市2016年12月一次严重空气污染过程,利用泰安市2016年12月地面和探空资料及NCEP/NCAR(美国国家环境预报中心/美国国家大气研究中心)提供的FNL资料,对泰安市严重污染期间大气环流形势、边界层条件、污染源及传输路径进行分析.结果表明:在泰安市霾污染期间,500 hPa大气环流形势呈"两槽一脊"的特征,850 hPa泰安市处于南支槽前,受西南暖湿气流影响,为ρ(PM2.5)的升高提供了有利条件;泰安市近地面处于高压控制下的弱风区(平均风速约为1.2 m/s)且边界层有逆温层存在,阻碍了PM2.5的垂直输送,造成近地面ρ(PM2.5)急剧升高.此外,泰安市及周边地区污染严重,聚类分析结果表明此次过程本地输送占比约为34%,其余均为外来传输,即污染物主要通过外来源传输,本地污染源贡献比率较小.污染物的高、低空传输路径不一致,低空污染物主要从安徽省水平输送至泰安市,高空污染物则先由河北省、河南省向南传输至安徽省、湖北省等地,再随南风气流向北输送至泰安市.研究显示,外来污染源传输作用配合本地静稳天气形势是造成此次泰安市空气污染的主要原因.   相似文献   

17.
针对石家庄市2015年12月5—14日出现的重污染过程,利用石家庄市逐日地基微波辐射计、风廓线雷达、地面气象观测资料以及同期的污染物观测资料,分析了重污染过程期间大气边界层温度、湿度、风变化特征及对PM_(2.5)的影响,采用Hysplit后向气团轨迹模式对污染来源进行分析。此次重污染以局地排放为主要形成源,期间冷空气势力弱,地面日平均风速均在1.5 m/s以下,日平均相对湿度均在70%以上,风速小、湿度大,稳定的大气环流形势为重污染提供了持续稳定的大气环境背景。逆温形成及快速增厚导致重污染开始,逆温层平均厚度为683 m,逆温层厚、强、不易消散,导致重污染持续时间长、污染重。近地面小风层厚(平均700 m左右),通风能力弱,导致污染物难以稀释扩散。同时近地层湿度大、厚度厚,使得PM_(2.5)更容易形成和积累,对重污染加重起到了促进作用。  相似文献   

18.
北京城区夏季静稳天气下大气边界层与大气污染的关系   总被引:7,自引:2,他引:5  
王耀庭  李威  张小玲  孟伟 《环境科学研究》2012,25(10):1092-1098
利用ALS300激光雷达系统测量的信号,根据Fernald方法反演的气溶胶消光系数的最大突变即最大递减率的高度确定大气边界层高度. 结果表明:在夏季静稳天气下,大气边界层平均高度为600 m,其中晴天为1 000 m,雾天为700 m,阴雨天在200~300 m之间. 静稳天气下的大气边界层不容易被有效突破,故不利于大气污染物扩散. 大气边界层高度对污染物浓度影响显著,没有降雨时,大气边界层降低(400 m),大气污染加重,在城区宝联站监测的ρ(PM2.5)近200 μg/m3,在大气本底站——上甸子站近150 μg/m3;如果伴有降水,大气边界层高度升至600 m,大气污染则减轻,2个站点观测的ρ(PM2.5)均降至50 μg/m3以下. 静稳天气下的大气污染呈现区域性特点.   相似文献   

19.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号