首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   6篇
综合类   10篇
灾害及防治   1篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
基于中国大气成分实时追踪数据集、天津气象局和生态环境局长序列PM2.5质量浓度和气象观测,结合MEIC排放清单和环境模式构建的细颗粒气象条件扩散指数,研究2000~2020年天津地区PM2.5质量浓度演变规律及驱动因子,以期更科学地分析气象对大气环境影响,为“十四五”期间深度环境治理提供支撑.结果表明,2000~2020年天津PM2.5质量浓度呈现3个阶段变化,第一阶段2000~2007年,呈现持续地上升,其变化速率为4.58μg·(m3·a)-1,该阶段排放量的快速增加是主导因素,其作用是气象条件年际波动影响的4倍,排放量增加使得PM2.5质量浓度增加45.3%;第二阶段为2007~2013年,该阶段PM2.5质量浓度呈现波动变化,出现了两个浓度峰值年(2007年和2013年),该阶段排放稳定,气象条件年际波动对PM2.5质量浓度年际波动产生重要影响,两者相关系数0.81;第三阶段为2013~2020年,PM<...  相似文献   
2.
基于国家气候中心气候系统监测指数集和天津环境模式细颗粒大气污染气象条件指数,建立基于环流指数的天津细颗粒物大气污染气象条件评估方法,研究1951~2021年天津气象和气候条件变化对PM2.5稀释、扩散和清除影响.结果表明,与天津春季大气污染气象条件高相关的环流指数有东大西洋遥相关型指数、热带北大西洋海温指数、斯堪的纳维亚遥相关型指数;夏季大气污染气象条件与副高位置密切相关,高相关环流指数为印度副高北界位置指数和南海副高北界位置指数;秋冬季亚洲纬向环流指数和亚洲经向环流指数高低对大气污染气象条件有较好指示意义,北极涛动指数和北半球极涡强度指数反映了影响我国秋冬季冷空气强度和频次,与秋季天津大气污染气象条件指数相关系数为0.45,与冬季天津大气污染气象条件相关系数为0.66.基于环流指数和基于数值模式构建天津细颗粒物大气污染气象条件相关系数为0.80,由此数据分析,1951~2021年天津细颗粒物大气污染气象条件年际变化平均波动在2.56%,极端峰谷值与平均值相差7%~8%,20世纪80年代最差,20世纪50年最优,21世纪10年代优于历史平均1.61%.  相似文献   
3.
基于2019年12月1日—2020年11月30日渤海及其西岸地区能见度观测和数值模拟,研究了该区域海岸陆能见度演变特征及其预报方法,并通过引入PM2.5浓度及建立相应的消光方程,提升该地区能见度预报准确率.结果表明:渤海及其西岸地区海岸陆能见度演变特征存在差异,就年平均能见度而言,海上(含港口)高于陆地,并且前者的能见度日变化较后者更趋平缓,低能见度(<3 km)天气陆地主要出现在0:00—8:00,海上(含港口)则全天均有可能出现,海上(含港口)0~500 m低能见度天气多于陆地,500~3000 m低能见度天气少于陆地.渤海及其西岸地区能见度预报需要考虑气溶胶消光的影响,欧洲数值模式(ECMWF)和天津气象台主观能见度预报产品,在该区域预报与实况的相关系数为0.2~0.3,相对误差为40%~50%.引入天津环境模式PM2.5浓度预报,基于ECMWF相对湿度和环境模式液态水含量,通过消光方程可以较好地改进预报该区域能见度的效果,其产品陆地和港口能见度预报与实况的相关系数分别为在0.8和0.5以上,相对误差分别为20%和40%左右,小于...  相似文献   
4.
天津地区霾天气特征研究   总被引:1,自引:0,他引:1  
基于2014~2017年天津地区PM2.5质量浓度,能见度和相对湿度监测数据开展霾天气特征研究.结果表明:天津中度以上霾过程分为五类:高压后部型,北部弱高压型,低压槽型,均压场型和锋前低压型.在现行标准下,中度霾一般对应重度污染天气,重度霾对应重度到严重污染天气;五级重度污染天气一般有中-重度霾发生,六级严重污染天气有重度霾天气发生.2013年“大气污染防治行动计划”开展以后,天津PM2.5质量浓度和霾日均显著减少,2017年相比2013年霾日减少了55%,中度及其以上霾日由2013年的41d下降到2017年的20d,下降幅度超过50%.基于实况监测的PM2.5质量浓度,能见度和相对湿度,可以较好的构建区域能见度计算方程.统计数据显示,其估算的能见度和实况值相关系数为0.94,相对误差为18.6%,非霾日辨识准确率为85%,霾日辨识准确率为95.6%,轻微霾辨识准确率为83%,轻度霾辨识准确率为78%,中度霾辨识准确率为93%,重度及以上霾辨识准确率为94%,对于判断霾等级,有较强的适用性.将该方程与空气质量模式结合开展霾等级预报,2015~2017年24h预报产品检验显示:能见度预报值与实况值相关系数为0.75,预报均值13.9km,实况均值14.1km,相对误差为29.6%,FAC2(预报值在实况值两倍范围内百分比)为98.1%,霾日预报准确率81.4%,霾日漏报率18.6%,霾日空报率20.6%,如果容错1级,轻微霾日预报准确率为96%,轻度霾日预报准确率为85%,中度及以上霾日预报准确率为69%,可有效支撑天津霾等级预报的开展.  相似文献   
5.
基于255 m气象塔天津地区污染天气高空风特征研究   总被引:4,自引:1,他引:3  
基于2016年4月—2017年3月天津地区地面、255 m气象塔和风廓线监测数据,结合数值模拟,研究天津污染天气分析中高空风特征,以期进一步提高污染天气预报准确率.结果表明:高空风速和风向分析对污染天气趋势判断有重要作用,如冠层以上高度风速、300~1500 m风向对PM2.5污染程度的指示效果好于近地面同类数据;在选取高空风速指标时,应尽量避免边界层顶附近高度风速数据选取,如使用300 m和600 m风速和作为指标要好于300、600和900 m风速和作为指标.而其是否有利于污染扩散判断的临界阈值为10~15 m·s-1,小于10 m·s-1时水平扩散条件不利于污染物扩散,大于15 m·s-1时有利于污染物扩散.分析高空风向时,需要考虑输送高度和Ekman螺线的影响,与地面不同,300~1500 m高空风分析时,有利于出现污染天气的风向为西风、西南风和南风,而地面仅为南风和西南风;当1500 m高度呈现东风、偏东风和东南风时,天津地区受来自渤海的气流影响明显,污染气象条件有利于污染物扩散,空气质量以良好为主.  相似文献   
6.
为提升天津空气质量数值模式精细化预报能力,基于高分辨率排放源清单,技术应用源反演技术和气溶胶三维变分同化方法开展2020年天津空气质量数值预测分析,评估不同技术对空气质量模式预报能力改进,并结合气象因素评估模式系统性误差,以期提升天津空气质量精细化预报能力,服务分区精细化大气污染防治.结果表明,基于高分辨率排放源清单、源反演技术和气溶胶三维变分同化方法,可有效改进天津空气质量模式预报能力,调整后天津PM2.5、 PM10、 SO2、 NO2和O3浓度预报平均偏差均在2μg·m-3以内,其中高分辨率排放源清单应用后PM2.5平均偏差为1.80μg·m-3,源反演技术和气溶胶三维变分同化技术应用后平均偏差分别为-1.45μg·m-3和-3.98μg·m-3,均显著小于原模式的18.75μg·m-3; PM2.5浓度预报和实况的相关...  相似文献   
7.
基于模式过程分析技术天津地区PM2.5污染气象成因分析   总被引:3,自引:3,他引:0  
基于WRF/Chem数值模式,通过过程分析技术和标记法源追踪技术解析水平输送、湍流混合、垂直运动、对流作用和区域输送对天津地区地面PM2.5质量浓度影响,研究2019年6月~2021年5月天津地区重污染天气成因.结果表明,基于上述方法可实现重污染天气气象成因定量描述,从水平输送、湍流混合、垂直运动、对流作用和区域输送角度实现重污染天气成因数值归因分析.天津地区水平输送作用为-2.03μg·(m3·h)-1、垂直平流为-2.24μg·(m3·h)-1、垂直混合为-11.70μg·(m3·h)-1、对流作用为-0.03μg·(m3·h)-1和区域输送贡献36.23%, 2019年6月~2021年5月共出现16次重污染过程,除一次沙尘影响和一次烟花爆竹影响外,均可通过建立数值归因方法,以水平输送作用变化速指标(α)、对流作用变化速指标、垂直平流作用变化速指标(φ)和湍流混合作用变化速指标(β)以及...  相似文献   
8.
9.
10.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号