首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   8篇
综合类   12篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
排序方式: 共有12条查询结果,搜索用时 140 毫秒
1.
基于中国大气成分实时追踪数据集、天津气象局和生态环境局长序列PM2.5质量浓度和气象观测,结合MEIC排放清单和环境模式构建的细颗粒气象条件扩散指数,研究2000~2020年天津地区PM2.5质量浓度演变规律及驱动因子,以期更科学地分析气象对大气环境影响,为“十四五”期间深度环境治理提供支撑.结果表明,2000~2020年天津PM2.5质量浓度呈现3个阶段变化,第一阶段2000~2007年,呈现持续地上升,其变化速率为4.58μg·(m3·a)-1,该阶段排放量的快速增加是主导因素,其作用是气象条件年际波动影响的4倍,排放量增加使得PM2.5质量浓度增加45.3%;第二阶段为2007~2013年,该阶段PM2.5质量浓度呈现波动变化,出现了两个浓度峰值年(2007年和2013年),该阶段排放稳定,气象条件年际波动对PM2.5质量浓度年际波动产生重要影响,两者相关系数0.81;第三阶段为2013~2020年,PM<...  相似文献   
2.
京津冀城市群冬季二次PM2.5的时空分布特征   总被引:1,自引:1,他引:0  
二次组分是造成京津冀城市群冬季PM2.5污染的重要因素.采用CO示踪法,估算2017~2021年冬季京津冀城市群二次PM2.5浓度,并分析其时空分布特征,探讨区域二次PM2.5的影响因素.结果表明,2017~2021年冬季京津冀区域PM2.5浓度下降趋势明显,河北中南部一次PM2.5下降幅度最大,二次PM2.5浓度年际波动平稳,北京和天津二次PM2.5占比明显高于其他城市.随着污染程度加剧,一次PM2.5和二次PM2.5质量浓度均有不同程度的增加,二次PM2.5占比呈显著增大趋势.与直接测量结果相比,CO示踪法获得的结果偏低,与冬季CO浓度较高,一次PM2.5浓度高估有关,选取合适的一次气溶胶基准值是改进该方法,获取合理估算值的关键.  相似文献   
3.
空气质量模式中湍流引起的垂直混合与湍流扩散系数K密切相关.为避免针对强稳定边界层计算中可能出现“无湍流大气”(即K=0)的异常结果,模式通过预设最小湍流扩散系数Kzmin,定义了K值的下限.检验表明天津空气质量模式整体模拟效果较好,但02:00—08:00存在系统性偏高的问题.针对这一问题,本文在天津大气稳定度特征分析和模式评估基础上,利用气象塔和系留获取真实湍流扩散系数,试验性修正重污染期间Kzmin取值,以期探索提升稳定层结条件下天津空气质量模式PM2.5模拟能力.结果表明:天津不同大气层结稳定度占比分别为4.91%(强不稳定)、9.33%(不稳定)、18.86%(弱不稳定)、50.29%(中性)、13.00%(较稳定)和3.61%(稳定).大气稳定条件下PM2.5浓度(62.6μg·m-3)相较不稳定和中性条件(38.8μg·m-3)升高61.3%,02:00—08:00稳定大气层结占比显著提升(28.2%),模式对该时段PM2.5浓度模拟存在系统性高估现象(9.3%)....  相似文献   
4.
基于国家气候中心气候系统监测指数集和天津环境模式细颗粒大气污染气象条件指数,建立基于环流指数的天津细颗粒物大气污染气象条件评估方法,研究1951~2021年天津气象和气候条件变化对PM2.5稀释、扩散和清除影响.结果表明,与天津春季大气污染气象条件高相关的环流指数有东大西洋遥相关型指数、热带北大西洋海温指数、斯堪的纳维亚遥相关型指数;夏季大气污染气象条件与副高位置密切相关,高相关环流指数为印度副高北界位置指数和南海副高北界位置指数;秋冬季亚洲纬向环流指数和亚洲经向环流指数高低对大气污染气象条件有较好指示意义,北极涛动指数和北半球极涡强度指数反映了影响我国秋冬季冷空气强度和频次,与秋季天津大气污染气象条件指数相关系数为0.45,与冬季天津大气污染气象条件相关系数为0.66.基于环流指数和基于数值模式构建天津细颗粒物大气污染气象条件相关系数为0.80,由此数据分析,1951~2021年天津细颗粒物大气污染气象条件年际变化平均波动在2.56%,极端峰谷值与平均值相差7%~8%,20世纪80年代最差,20世纪50年最优,21世纪10年代优于历史平均1.61%.  相似文献   
5.
基于气溶胶三维变分同化技术,建立天津空气质量数值模式气溶胶同化模块,通过天津地区两次重污染过程同化模拟敏感性试验,分析了观测资料范围对同化结果的影响,并结合一个月的滚动预报试验,分析了气溶胶同化对天津地区PM2.5数值预报效果的影响,以期为提升天津空气质量预报能力提供支撑.结果表明:气溶胶同化各控制变量背景误差水平相关系数的衰减尺度约50km,垂直方向上400m高度与模式底层的相关系数衰减至0.6左右;观测资料范围对同化结果影响显著,仅采用天津地区观测数据进行同化,对重污染过程期间天津地区PM2.5浓度模拟的影响时效约12h,采用模拟区域内所有观测数据进行同化影响时效可持续24h以上,且模拟效果更优;采用三维变分同化技术,实现地面PM2.5观测资料同化,天津地区PM2.5数值预报效果显著提升,预报值和实况值之间的相关系数由0.74增加到0.87,均方根误差由32.3μg/m3减小为22.4μg/m3,平均相对误差由39.9%减小为27.1%;同化对模式初始时刻的改进效果最明显,随时间同化效果衰减,14h内改进效果最佳,对24h PM2.5浓度预报也有明显改进.  相似文献   
6.
空气湿度是调节能见度变化和大气污染发展的重要气象因素,利用2015~2020年天津市冬季的相对湿度、比湿、PM2.5质量浓度和能见度的历史数据,分别分析了PM2.5质量浓度和能见度与相对湿度和比湿之间的关系.2015~2020年冬季,天津城区PM2.5质量浓度整体呈下降趋势,6 a下降了28.0%.10 km以上能见度天气的发生频率在2015~2018年冬季逐步上升,但在2019年和2020年的冬季重新下降.其中,2020年1月和2月天津市平均相对湿度达到63%和67%,显著高于30 a的历史同期均值,低于2 km的极端低能见度天气发生频率反弹至与2016年冬季相当的水平,空气湿度的升高在视觉上掩盖了PM2.5的减排效果.天津市水汽的外部来源主要包括西南方向和东部渤海湾方向的输送,其中渤海湾方向传输的水汽占比约为59%,明显高于西南方向的25%.但东风相对清洁,对PM2.5质量浓度的增长贡献有限,更多影响的是能见度.相比之下,当地面主导风向为西南风且比湿>2.0 g ·kg-1时,大气污染的发生频率高达83.6%.短时间内,比湿的变化与相对湿度相比较为平稳,冬季利用比湿的变化在一定程度上可以预测大气污染事件的发生及污染程度.冬季平均相对湿度>80%或比湿>3.0 g ·kg-1时,PM2.5质量浓度>75 μg ·m-3的发生频率分别为78%和80%.在冬季的环境气象预报中,要尤其警惕比湿高于3.0 g ·kg-1的天气条件.  相似文献   
7.
量化空气质量改善过程中气象条件和减排措施的相对贡献, 有助于科学评估减排措施的实施效果. 本文以2017—2019年京津冀区域13个城市PM2.5质量浓度为研究对象, 采用主成分分析、系统聚类等方法客观确定各次区域的典型代表城市, 并基于环境气象评估指数(EMI)量化空气质量改善过程中气象条件和减排措施的相对贡献. 结果表明, 京津冀区域PM2.5浓度整体呈南高北低特征, 高值区集中在河北省南部, 冬季区域PM2.5浓度显著高于其他季节. 经旋转后的主成分分析可划分出2个主成分, 分别对应河北省中南部地区和京津冀北部地区. 系统聚类将京津冀区域分为3个次区域, 经相似性计算获得次区域典型代表城市为承德、唐山和邢台. 以2017年为基准年开展EMI评估, 结果显示2018年1月承德、唐山和邢台PM2.5浓度下降, 减排和气象条件均有不同程度的贡献; 不利气象条件是2019年1月承德PM2.5上涨的主要原因, 排放造成同期唐山PM2.5浓度上升了52.8%,不利气象条件抵消了邢台减排的效果, 并造成其PM2.5浓度小幅度增加. 京津冀区域各城市PM2.5浓度的同步变化, 排放和气象条件对不同城市的贡献仍然存在很大差异, 在京津冀区域内划分次区域具有重要意义.  相似文献   
8.
采用大气化学模式定量估算2019年4月~9月区域输送对京津冀区域,特别是天津市O3浓度的影响,分析天气形势和气象条件与区域输送的关系。结果显示,京津冀区域13个城市O3以区域输送贡献为主,不同城市O3差异较大,天津本地贡献占比24%,区域输送以京津冀区域其他城市和山东为主,共贡献48.3%。低压、低压前和低压后形势下,O3区域输送占比最高。途径天津偏南区域的气流是造成天津高浓度O3污染的重要因素,也是区域输送的主要路径。随着O3浓度升高,输送贡献占比呈逐步上升趋势,重度污染时本地生成与区域输送贡献相当。一次典型O3污染过程分析表明,高温强辐射天气和有利的天气形势促进O3本地生成,西南气流和弱下沉气流下的区域输送共同维系了这场持续3d的连续污染过程。  相似文献   
9.
2020年初新冠肺炎疫情(COVID-19)暴发后,中国多地实施了严格的管控措施,导致污染物排放量明显下降.但在减排实施的情况下,京津冀PM2.5等污染物浓度较过去5 a同期却明显增长,出现了两次PM2.5重度污染事件.利用欧洲中心ERA5再分析资料分析发现,相对于过去5 a, COVID-19管控期间京津冀地区的气象场表现为偏高的相对湿度、偏低的边界层高度和边界层内异常的辐合上升运动,有利于颗粒物的吸湿增长和二次转化,不利于污染物垂直方向上的扩散.此外,利用WRF-Chem模式开展敏感性试验发现,在京津冀中部地区气象场的变化导致2020年管控期间ρ(PM2.5)升高了20~55μg·m-3,升高比例高达60%~170%.进一步利用过程诊断分析法得出,增强的气溶胶化学过程和不利的湍流扩散条件是2020年COVID-19管控期间PM2.5浓度升高的主要原因.在当今减排的大背景下,边界层高度和相对湿度的变化可能成为预报预测京津冀地区PM2.5污染事件的重要指标...  相似文献   
10.
为研究京津冀区域臭氧时空分布特征,并估算区域传输贡献,对2017~2019年京津冀区域68个国控站点资料进行主成分分析,并采用TCEQ法估算京津冀区域及细分的次区域内O3背景浓度.结果表明,京津冀区域O3浓度整体上呈现南高北低态势,地理位置的差异及其距离对于各城市臭氧浓度的均匀性分布影响较大.经最大方差法旋转后,主成分分析结果可将京津冀区域划分为河北省中南部、京津冀北部以及渤海西岸地区等3个稳定的次区域.对3个次区域分别采用TCEQ法估算O3背景浓度,计算得到3个次区域本地生成O3浓度依次为71,60,59μg/m3,区域背景浓度占O3日最大8h浓度的比值依次为34.3%,39.4%,42.2%.京津冀区域O3本地生成占主导,区域传输也不容忽视.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号