首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   4篇
综合类   6篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2014~2017年北京地区霾日数和污染日数逐年减少,PM_(2.5)、PM_(10)、SO_2和NO_2年平均质量浓度下降,污染程度缓解,采暖期中的11~12月尤为明显.针对空气质量的显著改善,从气象条件的改善和减排措施两方面进行探讨分析,并结合数值模式和大数据挖掘技术实现气象和排放对大气污染贡献率的定量化研究.结果表明,2017年与过去3 a相比,平均风速增加7. 9%,≥3. 4 m·s~(-1)的风速频次最高(10. 6%),≥70%湿度日占比最小(25. 1%);其中,采暖期与过去3 a同期相比,小风日数减少8. 6%、大气环境容量指数和通风指数平均增加约11%,边界层高度以3. 2%·a~(-1)的速率升高,尤其11~12月各要素改善更显著,且该时段内2014年各因子变化与2017年相似.非采暖期(4~10月)累积降水量558. 3 mm,仅次于2016年,有利于污染物的清除和湿沉降.利用WRF-CHEM对霾和污染频发的12月进行模拟发现,气象要素的改变导致2017年12月北京PM_(2.5)质量浓度较2014~2016年同期分别降低5%、38%和25%.因缺少政府实际施行的减排方案,无法利用WRF-CHEM量化气象和减排的具体贡献率,因此借助大数据挖掘算法,基于K近邻算法(KNN)和支持向量机(SVM)模型对气象和减排对空气质量改善的贡献进行评估,结果显示2017年减少的霾日和重污染日,65. 0%归因于减排的贡献,35. 0%归因为气象条件的改善.可见,气象与生态环境部门应继续加强数据开放共享,科学开展气象条件预报与减排评估.  相似文献   
2.
2020年初新冠肺炎疫情(COVID-19)暴发后,中国多地实施了严格的管控措施,导致污染物排放量明显下降.但在减排实施的情况下,京津冀PM2.5等污染物浓度较过去5 a同期却明显增长,出现了两次PM2.5重度污染事件.利用欧洲中心ERA5再分析资料分析发现,相对于过去5 a, COVID-19管控期间京津冀地区的气象场表现为偏高的相对湿度、偏低的边界层高度和边界层内异常的辐合上升运动,有利于颗粒物的吸湿增长和二次转化,不利于污染物垂直方向上的扩散.此外,利用WRF-Chem模式开展敏感性试验发现,在京津冀中部地区气象场的变化导致2020年管控期间ρ(PM2.5)升高了20~55μg·m-3,升高比例高达60%~170%.进一步利用过程诊断分析法得出,增强的气溶胶化学过程和不利的湍流扩散条件是2020年COVID-19管控期间PM2.5浓度升高的主要原因.在当今减排的大背景下,边界层高度和相对湿度的变化可能成为预报预测京津冀地区PM2.5污染事件的重要指标...  相似文献   
3.
大气中的挥发性有机物(volatile organic compounds,VOCs)作为对流层臭氧和二次有机气溶胶的前体物,在光化学反应和细颗粒物污染中发挥着重要的作用.本研究于2017年9月1~27日在上甸子区域背景站开展VOCs的连续在线观测,对VOCs的浓度水平,时空变化特征,化学反应活性及其对臭氧生成的贡献进行了研究,并运用特征物种比值法对初始VOCs的来源进行了分析.结果表明, 2017年9月上甸子站总VOCs平均体积分数为12.53×10~(-9),其中,烷烃是体积分数最大的组分,占到了总VOCs的65.3%,其次是烯烃和芳香烃,分别占到了总VOCs的26.7%和6.5%.从大气化学活性来看,上甸子站总的L~(·OH)(·OH损耗率)为5.2 s~(-1),其中C4~C5烯烃占到了61%,其次是C2~C3烯烃,占到了12.8%.VOCs的臭氧生成潜势平均值为36.5×10~(-9),烯烃是贡献最大的组分,占到了71.2%.烯烃中又以C4~C5烯烃的贡献最为突出,而体积分数较大的烷烃对臭氧生成的贡献却不大.对特征物种的比值研究发现,上甸子站VOCs受生物质燃烧和燃煤排放的影响较大,除此之外,交通排放源也有一定的影响,完全不受工业排放源的影响.  相似文献   
4.
利用相似集合预报技术(AnEn),采用2a的睿图-化学子系统(RMAPS-CHEM)历史预报结果和观测资料,对2018年6月1日~9月30日模式在京津冀地区13个城市共70个国控站点逐小时预报的O3浓度进行了释用订正研究,结果表明:随着集合成员数的增加,AnEn方法的预报效果呈现出先上升后下降的趋势,并且越过临界集合成员数后,预报效果逐渐降低,因此确定14为最优集合成员数.不同预报因子的权重敏感性不同,其中以RMAPS-CHEM本身预报的O3权重最高,其它依次为2m温度、2m相对湿度、10m风速和边界层高度.经过AnEn方法的释用订正,有效降低了O3浓度的预报误差.AnEn方法对O3浓度的时空变化趋势以及浓度值大小都有很好的订正效果,从所有站点的检验结果来看,AnEn方法订正后的O3浓度与观测值之间的相关系数较模式结果提升68.6%,均方根误差降低25%.AnEn方法对O3预报释用订正的效果存在明显的区域特征和日变化特征,白天时段对预报的提升主要集中在京津冀东部地区和大城市地区,夜间主要是在城市地区更加显著;AnEn方法夜间的订正效果优于白天,部分站点夜间提升效果(相关系数)超过250%.AnEn方法订正后的O3概率密度函数整体更接近实况,特别是在O3的低值区(35μg/m3以下)和高值区(200μg/m3以上)订正效果更佳.针对典型O3污染过程中北京、天津、石家庄3个城市的对比检验表明,AnEn方法在0~48h的预报时效内表现优于48~96h.不同城市体现出一定的区域差异,天津最优,北京和石家庄次之.AnEn方法对RMAPS-CHEM预报的O3浓度订正效果整体改善明显,可以在区域光化学污染数值预报工作中进行更加广泛的应用.  相似文献   
5.
北京平原和延庆地区山谷风异同及对污染的影响   总被引:1,自引:1,他引:0  
在一定的地形与天气条件下,山谷风环流是影响山地和平原气溶胶污染的主要气象因素之一.本研究基于2015~2019年京津冀地区生态环境监测数据和多源气象数据,对比分析了北京平原和延庆地区山谷风异同,结合典型污染事件揭示了山谷风不同阶段对PM2.5浓度的影响机制.经分析发现,观象台山谷风为偏西南风转偏东北风,延庆站为偏东南风转偏东北风,随着污染等级加重,山谷风强度减弱17.7%~32.4%;观象台风速2~6 m·s-1时,最大为SE风向PM2.5浓度83μg·m-3,东南风浓度高于西南;延庆站风速2~6 m·s-1时,偏东南方向浓度高于其他风向20~40μg·m-3,谷风阶段PM2.5浓度高于近5年均值10~12μg·m-3.以2015年3月5~8日重污染事件为例,山谷风的影响作用主要体现在谷风时段东南风的高湿性及区域传输作用,延庆站3月6~7日谷风阶段PM2.5浓度上升100~130μg·m-3;山风时段逆温发展至1000 m,观象台和延庆站露点先后抬升18℃左右,延庆站露点峰值滞后观象台2 h,高湿环境下PM2.5浓度小幅上升.同时,3月6~7日延庆站400 m高度和玉渡山站热力梯度逐渐减小,山谷风分别减小8%和6%,局地环流减弱可能与边界层和高浓度气溶胶双向反馈机制有关.  相似文献   
6.
针对北京地区2020年冬季疫情防控期(1月24至2月29)的空气质量及两次持续性重污染过程进行分析,探究了该时段的大气污染特征及其气象影响.与过去5a同期相比,2020年疫情防控期间北京冷空气强度偏弱,活动频次偏少50%,气温偏高0.73℃,风速和混合层高度偏低17.8%和32.5%,相对湿度和露点温度增加60.9%和48.1%,偏北风频率减少7.5%,而偏南风和偏东风频率均增大6.0%;气象条件较历史同期明显转差;虽然降水量偏多,但整体降水强度弱、时次集中,因而颗粒物的整体清除作用有限.两次重污染过程(1月24~29日和2月8~13日)分别维持59和75h,两个过程累积阶段(1月24~25日和2月9~11日)均受区域输送影响较大,输送占比为70%和58%,分偏东和偏南两个通道.针对污染过程的源解析显示,本地污染贡献占比为67%和48%,可见在维持和加重阶段颗粒物的吸湿增长和二次生成占比增加.经分析,“高湿静稳”的不利气象背景下,大气垂直动力和水平辐合的叠加使PM2.5和水汽在北京平原累积,将其压制在边界层内快速增长;升高的污染物也与静稳的边界层气象因子双向反馈,导致污染进一步加重.根据EMI指数计算,2020年冬季疫情防控期的气象条件约引起70.1%的PM2.5浓度增加;而与过去5a同期相比,疫情防控期间排放的减少抵消了约53%的不利气象条件影响;两次污染过程与过去5a同期的9次过程相比,EMI分别偏大26.9%和19.7%,但PM2.5浓度基本持平或略有降低.可见,在目前的排放基数上,即使出现特殊情况下的城市封锁,排放量的减少将削减污染浓度峰值,但仍不足以完全抵消不利气象条件的影响.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号