首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
综合类   4篇
  2021年   3篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
在北京城区和上甸子本底地区分别开展了为期3a和1a的NH3在线观测,并结合风向、风速、温度、相对湿度等气象因素的变化特征,分析了北京地区NH3浓度水平、年季特征及影响因素.结果发现,北京城区和本底地区的NH3年均浓度分别为(32.5±20.8)×10-9V/V和(11.6±10.3)×10-9V/V,北京城区的NH3浓度高于大多数国内外主要城市和地区的NH3浓度水平.城区和本底地区NH3浓度年变化特征为夏季高,分别为(34.1±6.8)×10-9V/V和(11.1±2.2)×10-9V/V,冬季低,分别为(19.7±9.3)×10-9V/V和(2.4±0.6)×10-9V/V.NH3的日变化特征受气象因素影响明显,其结果表明,春季城区NH3浓度峰值出现在15:00,而本底地区受西南风影响在20:00达到峰值;夏季城区NH3浓度最高值在7:00出现,本底地区则呈现双峰值(分别在09:00和22:00);秋季城区和本底地区的日变化规律一致,均在22:00出现峰值;冬季城区的峰值出现时间晚于本底地区,峰值分别出现在23:00和20:00.西南风是造成本底地区NH3浓度升高的主要原因,春季和夏季,随着西南向风速的增大,NH3浓度显著升高.城区的NH3浓度则主要受到局地排放的影响.浓度权重轨迹法的研究结果发现,北京、天津、河北及河南北部地区是影响北京地区大气NH3的主要源区.  相似文献   
2.
北京地区2019年2~3月供暖结束前后两次污染过程特征分析   总被引:2,自引:2,他引:0  
以2019年2~3月北京两次污染过程为例,针对气象要素及污染物浓度进行特征分析,利用后向轨迹及WRF-CAMx模式,分析供暖结束前后的污染物演变规律,并探讨气象条件、区域输送及二次转化等对污染过程的影响.结果表明,2月21~24日(过程1)和3月18~20日(过程2)平均ρ(PM2.5)差异不大,分别为100.1 μg·m-3和97.2 μg·m-3,但过程1平均峰值偏高、日变化明显、过程发展迅速和有两个峰值阶段,且为区域性污染,而过程2更倾向于北京局地污染.两次过程逐时ρ(SO2)均不超16 μg·m-3,供暖燃煤治理效果显著,但过程1的SO2存在夜间次峰值,体现供暖排放影响.过程1的ρ(CO)较高,尤其是2月21~22日前后ρ(CO)/ρ(SO2)升高,且区域中南部城市及北京南部背景站污染高于城区,表明过程1扩散条件不利,且第一个峰值主要受区域输送影响.过程2的ρ(PM2.5)/ρ(CO)偏高,表明二次生成PM2.5占比略大;ρ(NO2)/ρ(CO)、ρ(SO2)/ρ(CO)和ρ(SO42-)/ρ(PM2.5)偏大,SOR与过程1持平,表明过程1更有利于气体相态转化,过程2受工业燃煤影响更大.但将过程1分阶段分析显示,过程1第二阶段与过程2的PM2.5二次生成指征相似,均高于过程1第一阶段,即过程1第二个峰值与过程2主要与本地排放和化学转化相关.WRF-CMAx对污染物演变趋势有较好的再现能力.同化试验对PM2.5趋势模拟显著提升,提高了与观测的相关性,但模拟值偏低;对NO2的模拟2月偏低、3月偏高,对SO2模拟明显偏高有一定纠正;此外,过程2中北京污染物浓度对河北的敏感性相对过程1偏低,即过程1受区域输送影响更大.模式对污染暴发性增长的模拟亟待提升,污染物种类对减排的响应及大气氧化剂和气溶胶性质相关的反馈等可能是影响模拟效果的重要原因,需进一步研究.  相似文献   
3.
针对北京地区2020年冬季疫情防控期(1月24至2月29)的空气质量及两次持续性重污染过程进行分析,探究了该时段的大气污染特征及其气象影响.与过去5a同期相比,2020年疫情防控期间北京冷空气强度偏弱,活动频次偏少50%,气温偏高0.73℃,风速和混合层高度偏低17.8%和32.5%,相对湿度和露点温度增加60.9%和48.1%,偏北风频率减少7.5%,而偏南风和偏东风频率均增大6.0%;气象条件较历史同期明显转差;虽然降水量偏多,但整体降水强度弱、时次集中,因而颗粒物的整体清除作用有限.两次重污染过程(1月24~29日和2月8~13日)分别维持59和75h,两个过程累积阶段(1月24~25日和2月9~11日)均受区域输送影响较大,输送占比为70%和58%,分偏东和偏南两个通道.针对污染过程的源解析显示,本地污染贡献占比为67%和48%,可见在维持和加重阶段颗粒物的吸湿增长和二次生成占比增加.经分析,“高湿静稳”的不利气象背景下,大气垂直动力和水平辐合的叠加使PM2.5和水汽在北京平原累积,将其压制在边界层内快速增长;升高的污染物也与静稳的边界层气象因子双向反馈,导致污染进一步加重.根据EMI指数计算,2020年冬季疫情防控期的气象条件约引起70.1%的PM2.5浓度增加;而与过去5a同期相比,疫情防控期间排放的减少抵消了约53%的不利气象条件影响;两次污染过程与过去5a同期的9次过程相比,EMI分别偏大26.9%和19.7%,但PM2.5浓度基本持平或略有降低.可见,在目前的排放基数上,即使出现特殊情况下的城市封锁,排放量的减少将削减污染浓度峰值,但仍不足以完全抵消不利气象条件的影响.  相似文献   
4.
北京地区偏南风和偏东风条件下污染特征差异   总被引:5,自引:5,他引:0       下载免费PDF全文
尹晓梅  乔林  朱晓婉  郭恒  刘湘雪  熊亚军 《环境科学》2020,41(11):4844-4854
为探究污染的控制风向特征差异及其长期演变趋势,对2014~2019年北京地区逐小时气象要素和PM2.5浓度统计分析.结果表明,研究时段内北京地区67%的污染发生在偏南风和偏东风的控制下,且冬季最易出现污染,其次为春季和秋季,各自对应的冬、春、秋和夏季平均污染概率为45.2%、34.1%、32.1%和26.1%及47.0%、45.8%、39.7%和29.6%.北京偏南风频率更高,但偏东风下污染概率更大,污染差异在春季最明显11.7%(2.8%~18.6%),冬季最小1.8%(-7.6%~13.9%).过去6 a,偏南风和偏东风下的污染概率分别以每年4.6%~8.0%和5.5%~7.9%的速度降低,很大程度体现在中度及以上程度污染占比的减少.偏南风下污染发生时,能见度和混合层高度偏高、风速偏大、小时风速≥3 m ·s-1的时次偏多、相对湿度和露点温度偏低,春季、夏季和秋季的PM2.5平均、峰值和75%百分位浓度显著低于偏东风控制下的污染,而冬季PM2.5浓度则偏高.这表明,污染发生时,偏南风下大气对污染物的承载和扩散能力略好于偏东风,且偏东风下大气含水量的增加有利于污染的维持和加重.而冬季,原有排放加上城市供暖的影响,偏南风输送的污染气团可能更有助于PM2.5浓度的升高.此外,春季、夏季和秋季的污染逐渐向"偏东风型"发展,但冬季一直保持"偏南风型"污染.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号