首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
研究京津冀城市群PM2.5浓度时空格局变化和影响因素,对区域大气环境保护和经济可持续发展具有十分重要的意义.基于PM2.5遥感数据、地面站点气象数据、DEM数据、MODIS NDVI数据、夜间灯光数据、人口密度数据、土地利用类型数据和路网数据,利用Theil-Sen Median趋势分析、Mann-Kendall显著性检验和Getis-Ord Gi*分析,运用地理探测器分析京津冀城市群PM2.5浓度时空变化和空间聚集特征,并探究影响其空间分异的影响因素.结果表明:(1)2000—2021年京津冀城市群PM2.5污染严重,全年平均PM2.5浓度为59.94μg/m3,冬季是京津冀城市群PM2.5污染的高发季,但京津冀城市群PM2.5浓度总体呈下降趋势,变化斜率为–0.85μg/(m3·a).(2)PM2.5浓度在空间上呈东南高、西北低的分布格局,且P...  相似文献   

2.
基于中国168个大气污染防治重点城市2015~2020年的5种污染物浓度监测数据,利用MAKESENS模型和综合风险指数(ARI),定量分析全国与6大城市群的大气污染总健康风险的时空分布特征.结果表明:(1)中国重点城市PM2.5污染最严重,仅15%的城市PM2.5浓度6 a均值达到了国家二级标准,NO2次之,77%的城市NO2浓度6 a均值达到了国家二级标准,京津冀和汾渭平原城市群空气污染最严重,PM2.5、 SO2、 CO和NO2浓度6 a均值高于其他城市群;(2)中国重点城市PM2.5、 SO2、 CO和NO2浓度呈下降趋势,除成渝城市群外,其余地区O3浓度呈上升趋势;京津冀和汾渭平原城市群SO2浓度下降最显著;(3)中国重点城市大气污染健康风险总体呈下降趋势,2017~2018年出现急剧下降,暴露在极高风险下的人口从1...  相似文献   

3.
研究成渝城市群PM2.5浓度时空变化和驱动机制,对区域大气环境保护和国家经济可持续发展具有重要意义.基于PM2.5遥感数据、 DEM数据、基于站点的气象数据、 MODIS NDVI数据、人口密度数据、夜间灯光数据、路网数据和土地利用类型数据,采用Theil-Sen Median趋势分析和Mann-Kendall显著性检验等方法,结合地理探测器,在多时空尺度上分析成渝城市群PM2.5时空变化,并探测影响其变化的驱动机制.结果表明,2000~2021年成渝城市群PM2.5浓度整体呈波动下降态势,冬季PM2.5污染最为突出.PM2.5浓度具有明显的空间异质性,呈现出“中间高,四周低”的空间分布特征,PM2.5浓度高值区主要集中在自贡、内江、资阳和广安,PM2.5浓度呈显著下降的区域主要集中在重庆西部等地.因子探测结果表明,成渝城市群PM2.5浓度空间分异受气候、地形、植被和人文因子共同影响.高程、...  相似文献   

4.
为了解京津冀及周边地区“2+26”城市PM2.5和O3复合污染时空分布特征,利用ArcGIS和SPSS软件对2015~2021年京津冀及周边地区“2+26”城市空气质量数据和气象数据进行关联性分析.结果表明:(1) 2015~2021年PM2.5污染持续减缓,污染集中在区域中南部;O3污染呈波动上升趋势,空间分布呈现“西南低,东北高”的格局.季节变化来看,PM2.5浓度主要为:冬季>春季≈秋季>夏季,O3-8h浓度为:夏季>春季>秋季>冬季.(2)“2+26”城市PM2.5超标天数持续下降,O3超标天数波动上升,复合污染日下降趋势显著;PM2.5和O3污染在夏季呈强正相关,相关系数最高达0.52,冬季呈强负相关.(3)对比典型城市臭氧污染时期与复合污染时期气象条件,复合污染发生的温度区间集中在23.7~26.5℃、湿度48%~65%和S~S...  相似文献   

5.
中国典型城市群PM2.5污染特征研究进展   总被引:5,自引:2,他引:3       下载免费PDF全文
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,城市群之间的相互影响和传输机制尚不清楚.建议今后的研究向以下几个方面扩展:①对城郊乡村等大气背景点,以及水库、湖泊等地化循环的重要源汇区域开展研究.②针对同一区域开展采样时段更长且研究方法和分析手段上保持一致的研究.③借用国外经验公式时需考虑我国国情,对基础研究方法开展一系列优化,建立符合我国国情的标准化研究方法.   相似文献   

6.
曾德珩  陈春江 《环境科学研究》2019,32(11):1834-1843
随着工业化与城镇化的深入推进,成渝城市群的PM2.5污染不断加剧,呈明显的区域性与复合性特征.该研究以2015—2017年成渝城市群空气质量监测站的日均ρ(PM2.5)数据为基础,结合区域气象、遥感与统计年鉴等多源数据,采用反距离插值法分析了ρ(PM2.5)的时空分布差异,采用Moran's I指数与LISA指数探索了ρ(PM2.5)的全局和局部空间自相关性,并利用空间回归模型研究了自然、经济社会等因素对ρ(PM2.5)的影响.结果表明:①成渝城市群ρ(PM2.5)分布存在明显的时空差异.时间上,2015年PM2.5污染最严重,ρ(PM2.5)年均值为54.38 μg/m3,2016年、2017年PM2.5污染状况逐年减轻,ρ(PM2.5)年均值分别为53.68与47.56 μg/m3;空间上,成渝城市群东北部ρ(PM2.5)较低,而南部ρ(PM2.5)较高.②空间自相关分析结果表明,PM2.5污染在成渝城市群存在显著的空间聚集性,成渝城市群南部ρ(PM2.5)呈高值-高值聚集,成渝城市群北部ρ(PM2.5)则呈低值-低值聚集.③空间回归结果表明,成渝城市群范围内某一地区邻近区域的ρ(PM2.5)平均值增加1%时,该地区ρ(PM2.5)将上升至少0.38%.城镇化率对ρ(PM2.5)的影响最大,其次是第一产业增加值,再次是工业增加值占比和降水量.城镇化率、降水量与ρ(PM2.5)呈负相关,而第一产业增加值、工业增加值占比与ρ(PM2.5)呈正相关.研究显示,加快城镇化进程、减少第一产业排放、降低工业增加值占比(尤其是重污染工业)是有效解决成渝城市群PM2.5污染的重要手段.   相似文献   

7.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

8.
2013—2015年中国PM2.5污染状况时空变化   总被引:2,自引:0,他引:2       下载免费PDF全文
自2013年我国首次开展全国范围PM2.5近地面监测以来,少有研究从全国空间尺度分析近3年全国PM2.5污染状况时空变化的总体特征,识别PM2.5污染加剧或缓解的空间范围,更缺乏直接对比评估国家大气污染重点防控区内外PM2.5污染特征变化的差异.基于2013—2015年PM2.5监测数据,综合运用时空统计分析与空间插值制图手段,揭示近3年ρ(PM2.5)及不同等级污染天数的时空变化格局,并着重对比分析“三区十群”区域内外ρ(PM2.5)的变化差异.结果表明,2013—2015年,全国持续监测的413个站点中有335个监测站点ρ(PM2.5)年均值下降,其中218个站点实现连续两年年均浓度降低,74个站点ρ(PM2.5)年均值降至符合国家二级标准;全国大部分地区ρ(PM2.5)年超标率由50%以上降至30%以下,重度污染站点占比由88.38%降至73.77%,严重污染站点占比由65.86%降至36.35%;长三角城市群、长株潭城市群、武汉及周边城市群、陕西关中城市群PM2.5污染呈现明显好转趋势;西藏、云贵高原以及海峡西岸城市群、珠三角城市群等沿海地区ρ(PM2.5)一直较低,空气质量相对优良;但与此同时,京津冀城市群、山东半岛城市群及河南中部和北部地区仍是中国PM2.5重污染区域,新疆西南部、合肥、南昌等地区逐渐形成新的PM2.5重污染格局.   相似文献   

9.
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合ArcGIS软件空间插值法、SPSS 21.0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1)2017年京津冀地区ρ(PM2.5)年均为64.4μg/m3,比2016年下降11.5%,全年达标天数占比为74.2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92.4%;其中,1月平均ρ(PM2.5)最高。4)从空间范围看,整体上京津冀地区呈现南高北低,南北差异相对明显,其中其北部承德、张家口、秦皇岛地区ρ(PM2.5)最低,石家庄、邯郸PM2.5污染较严重。5)源解析结果表明,冬季北京地区主要受本地污染源影响,在春、秋季节受周边区域源贡献因子PSCF值>0.4,河北、山东、河南等地对北京PM2.5的污染有一定的源贡献。  相似文献   

10.
京津冀城市群是中国三大城市群之一,其城市化进程对大气污染造成了严重的影响.基于土地利用、站点实测和遥感反演的PM2.5浓度数据集,辅以趋势分析和分段线性回归等方法,分析了2000~2018年京津冀城市群PM2.5浓度的时空演变格局及其与城市扩张的关联.结果表明:(1) 2000~2018年京津冀城市群PM2.5浓度变化呈明显的阶段特征,2000~2013年PM2.5浓度呈显著增加的趋势[slope=1.598 0μg·(m3·a)-1,P<0.001],其中69.97%的区域呈显著增加趋势(P<0.05); 2013~2018年PM2.5浓度呈显著减小的趋势[slope=-4.990 8μg·(m3·a)-1,P<0.001],其中85.81%的区域呈显著减小的趋势(P<0.05);(2) PM2.5浓度整体呈从东南向西北递减的趋势,高污染区[ρ...  相似文献   

11.
基于WRF-CMAQ空气质量模型,采用开关污染源排放的敏感性试验方法,定量分析了淮海经济区核心区污染排放对京津冀区域、"2+26 "大气污染传输通道城市、汾渭平原地区和长三角区域PM2.5的贡献.结果表明,对京津冀区域,污染贡献比例最大值出现在10月份,同时对不同城市的贡献值在10%以内变化;对" 2+26"大气传输通道城市,影响的时空差异变化明显,其中对聊城市、菏泽市和济南市的贡献值均超过了10%;对汾渭平原地区的贡献总体较弱,最大贡献值低于5%;对长三角区域,贡献值在不同城市间的时空差异变化明显.考虑到淮海经济区地处京津冀和长三角过渡地带,且对京津冀和长三角区域PM2.5影响较大,建议尽快将淮海经济区核心地区纳入国家大气污染重点控制区.  相似文献   

12.
京津冀PM2.5时空分布特征及其污染风险因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析京津冀及其周边区域2013年典型污染事件中PM2.5的时空分布特征及污染风险因素,根据国家城市环境空气质量实时发布数据和京津冀地区地理国情信息监测成果,采用空间数据挖掘方法对PM2.5污染的热点区域进行了划分;并采用地理探测器定量分析了PM2.5污染风险因子及其影响程度. 结果表明:在选取的京津冀6个城市中,在PM2.5污染事件统计上存在保定—廊坊—北京—天津—承德—张家口的污染顺序. PM2.5污染在空间上呈河南省(山东省)—河北省—北京市(天津市)一线的带状分布特征,在单次污染事件中,城市间的PM2.5污染存在空间运移关系. 空间热点探测表明,京津冀及其周边区域主要分为5个热点聚集区,其中3个高值区分布在北京市、天津市、河北省和山东省的中部,面积分别为5.31×104、10.26×104、5.04×104 km2. 在8个污染风险因子中,污染企业总数(影响力为0.97,下同)、降水量(0.93)、地形坡度(0.89)对PM2.5污染的影响显著高于其他风险因子;其他风险因子影响力排序依次为人口数量(0.60)、降水量大于0.1 mm的降水日数(0.57)、地表覆盖类型(0.52)、年均相对湿度(0.51)、年均风速(0.33),但风险因子间相比没有显著性差异. 研究显示,京津冀地区PM2.5污染的主要因素是污染物排放,其次,气象要素中的年降水量和自然地理环境中的地形坡度也是影响PM2.5污染特征的重要风险因子.   相似文献   

13.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

14.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

15.
基于北京、石家庄2017、2018年的1月和7月PM2.5样品采集,研究两地采暖期、非采暖期及典型重污染过程的PM2.5、SNA污染特征及二次转化特征.应用TrajStat模型,结合浓度权重轨迹分析法(CWT),分析两地PM2.5气流输送路径以及潜在源区.利用WRF-CAMx模式定量分析两地重污染月份(2017年1月)PM2.5、硫酸盐及硝酸盐的区域传输贡献.结果表明, 2017年1月北京和石家庄均存在重污染过程,两年1月石家庄市PM2.5浓度均高于北京; SNA占PM2.5所有组分的34.11%~51.68%,对PM2.5浓度有重要贡献,其中北京NO3-浓度最高,石家庄SO42-浓度最高, SO42-/NO3-夏季高于冬季;北京SOR高于石家庄,石家庄NOR高于北京,重污染期间两城市硫酸盐、硝酸盐、铵盐质量浓度、SOR与NOR明显升高;两地冬季气流主要受俄罗斯、蒙古、内蒙戈壁等地区的西北方向远距离输送影响,另外北京两年冬季均存在西南传输通道,石家庄重污染期间受冀南和鲁西北重工业城市群潜在贡献较高,两市夏季受东南季风影响,污染轨迹多来自渤海湾和山东等地区; 2017年1月,北京、石家庄PM2.5受周边区域传输贡献分别为33.80%、22.54%,其中河北南部分别贡献14.86%, 17.21%,二次离子中NO3-的传输作用比SO42-更加突出.从PM2.5本地源来看,北京主要来源为移动源和扬尘源,分别占比43.30%、20.10%,石家庄为工业、燃煤和扬尘,分别占比26.40%、24.82%、22.50%.  相似文献   

16.
李惠娟  周德群  魏永杰 《环境科学》2018,39(8):3467-3475
开展大样本城市的空气污染造成人群健康风险及经济损失研究,对于推进空气污染的防控与区域合作治理、公众健康素养提升具有重要意义.本文以我国62个环保重点监测城市为样本,运用环境健康风险与环境价值评估方法,对2015年PM_(2.5)污染引发的健康风险及经济损失进行评价,结果表明PM_(2.5)污染造成约12.51万人早逝[95%CI(置信区间):3.33~20.59万人]及1 009.59万人次患病、门诊和住院(95%CI:470.38~1 501.93万人次),占这些城市市区总人口的3.53%(95%CI:1.64%~5.26%).造成经济损失5 705.57亿元(95%CI:1 930.82~8 742.14亿元),占这些城市GDP总和的1.53%(95%CI:0.52%~2.35%),人均经济损失1 970元(95%CI:667~3 018元).四大城市群中,京津冀在健康风险、健康经济损失及其占GDP比重、人均损失方面均高于长三角、珠三角及东北.三大经济区中,东部的健康风险及经济损失高于中部与西部,三地的人均经济损失差别不大.南北方的经济损失相差很小,但北方的经济损失占GDP比重与人均损失均远高于南方.保定、郑州、济南、北京等市PM_(2.5)浓度很高,健康风险与经济损失问题突出.  相似文献   

17.
康博  刘强  赵强 《地球与环境》2020,48(2):161-170
为了解关中平原城市群PM2.5时空变化规律,利用2015~2018年国家空气质量检测平台发布的PM2.5实时监测数据,并用地统计学和探索性空间数据分析等方法,对关中平原城市群PM2.5污染的时空变化规律进行分析。结果表明,关中平原城市群PM2.5污染总体呈向好趋势,PM2.5年均超标城市由11个减少到8个,年均浓度超标率显著下降。PM2.5污染主要出现在冬季,春秋季过渡,夏季PM2.5浓度季度均值、月均值都最低,PM2.5日均值曲线与月均值曲线大致趋势一致,呈单峰"脉冲型"变化;PM2.5污染在空间上具有明显的分异性和集聚性特征,表现出"临汾-咸阳"为轴的高污染区面积逐渐缩小,而以平凉、天水为中心的低污染区面积逐渐扩大的空间变化规律。  相似文献   

18.
山地型城市冬季大气重污染过程特征及成因分析   总被引:5,自引:5,他引:0  
以阳泉市2018年12月26日~2019年1月20日发生的典型大气重污染过程为例,研究了山地型城市冬季大气重污染过程特征及成因.结果表明,重污染发生时段首要污染物为PM2.5,水溶性离子和碳质组分是PM2.5主要组分,其中二次离子SO42-、NO3-和NH4+是主要水溶性离子成分(共占离子组分的87.7%),二次有机碳(SOC)是碳质组分的主要成分(71.6%).二次离子在重污染发生时的浓度较发生前增加5.3倍,是导致PM2.5快速增长的重要组分.气象条件分析显示,PM2.5及其主要组分皆与相对湿度呈显著正相关关系而与风速呈显著负相关,随相对湿度增加以及平均风速降低,污染程度逐渐加重.山地型城市相对湿度较高、温度变化幅度大等气象特征使二次污染物的生成加快,是导致PM2.5污染程度快速加重的主要原因.另外,山地型城市相对封闭的地形导致的平均风速降低使得大气污染物扩散条件相对较差是污染物累积的原因之一.PMF模型解析结果为:二次源(46.0%)对PM2.5贡献显著,其次为燃煤源(32.6%)、机动车源(19.8%)和扬尘源(1.6%).因此,山地型城市更应该重视对二次组分,特别是二次离子形成的前体物的管控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号