首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
研究京津冀城市群PM2.5浓度时空格局变化和影响因素,对区域大气环境保护和经济可持续发展具有十分重要的意义.基于PM2.5遥感数据、地面站点气象数据、DEM数据、MODIS NDVI数据、夜间灯光数据、人口密度数据、土地利用类型数据和路网数据,利用Theil-Sen Median趋势分析、Mann-Kendall显著性检验和Getis-Ord Gi*分析,运用地理探测器分析京津冀城市群PM2.5浓度时空变化和空间聚集特征,并探究影响其空间分异的影响因素.结果表明:(1)2000—2021年京津冀城市群PM2.5污染严重,全年平均PM2.5浓度为59.94μg/m3,冬季是京津冀城市群PM2.5污染的高发季,但京津冀城市群PM2.5浓度总体呈下降趋势,变化斜率为–0.85μg/(m3·a).(2)PM2.5浓度在空间上呈东南高、西北低的分布格局,且P...  相似文献   

2.
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合ArcGIS软件空间插值法、SPSS 21.0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1)2017年京津冀地区ρ(PM2.5)年均为64.4μg/m3,比2016年下降11.5%,全年达标天数占比为74.2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92.4%;其中,1月平均ρ(PM2.5)最高。4)从空间范围看,整体上京津冀地区呈现南高北低,南北差异相对明显,其中其北部承德、张家口、秦皇岛地区ρ(PM2.5)最低,石家庄、邯郸PM2.5污染较严重。5)源解析结果表明,冬季北京地区主要受本地污染源影响,在春、秋季节受周边区域源贡献因子PSCF值>0.4,河北、山东、河南等地对北京PM2.5的污染有一定的源贡献。  相似文献   

3.
2013—2015年中国PM2.5污染状况时空变化   总被引:2,自引:0,他引:2       下载免费PDF全文
自2013年我国首次开展全国范围PM2.5近地面监测以来,少有研究从全国空间尺度分析近3年全国PM2.5污染状况时空变化的总体特征,识别PM2.5污染加剧或缓解的空间范围,更缺乏直接对比评估国家大气污染重点防控区内外PM2.5污染特征变化的差异.基于2013—2015年PM2.5监测数据,综合运用时空统计分析与空间插值制图手段,揭示近3年ρ(PM2.5)及不同等级污染天数的时空变化格局,并着重对比分析“三区十群”区域内外ρ(PM2.5)的变化差异.结果表明,2013—2015年,全国持续监测的413个站点中有335个监测站点ρ(PM2.5)年均值下降,其中218个站点实现连续两年年均浓度降低,74个站点ρ(PM2.5)年均值降至符合国家二级标准;全国大部分地区ρ(PM2.5)年超标率由50%以上降至30%以下,重度污染站点占比由88.38%降至73.77%,严重污染站点占比由65.86%降至36.35%;长三角城市群、长株潭城市群、武汉及周边城市群、陕西关中城市群PM2.5污染呈现明显好转趋势;西藏、云贵高原以及海峡西岸城市群、珠三角城市群等沿海地区ρ(PM2.5)一直较低,空气质量相对优良;但与此同时,京津冀城市群、山东半岛城市群及河南中部和北部地区仍是中国PM2.5重污染区域,新疆西南部、合肥、南昌等地区逐渐形成新的PM2.5重污染格局.   相似文献   

4.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

5.
京津冀及周边地区是我国最具有代表性的空气污染较严重的城市群,为探究重污染地区空气污染的疾病负担及其未来空气质量改善的健康效益,基于环境因子人群疾病负担评估的基本方法,评估了京津冀及周边地区“2+26”城市2015年的PM2.5相关疾病负担,并对该地区在“十四五”及中长期PM2.5污染控制目标下的未来PM2.5疾病负担进行了预估研究,分析了PM2.5污染控制目标带来的健康效益.结果表明:①2015年“2+26”城市PM2.5所致超额死亡数为15.11×104例.②若不考虑人口变化,未来空气质量按“十四五”及中长期PM2.5污染控制目标改善,预计到2025年、2030年和2035年“2+26”城市PM2.5所致超额死亡数将分别降至11.49×104、10.62×104和9.85×104例,比2015年分别减少了23.96%、29.72%和34.79%.③分年龄段和分疾病对比发现,65岁以上老年人群PM2.5相关超额死亡数的占比较高且有上升趋势,与PM2.5相关的心脑血管系统疾病(中风和缺血性心脏病)的超额死亡数在PM2.5相关超额死亡总数中占比最大,且有增加的趋势.研究显示,京津冀及周边地区“2+26”城市未来空气质量的改善将大幅降低空气污染相关疾病负担,带来显著的健康效益,但由于人口增长和老龄化的影响,未来较长时间内我国空气污染带来的疾病负担依然较重,应持续改善空气质量,并关注脆弱人群的健康防护,以进一步降低空气污染相关疾病负担.   相似文献   

6.
京津冀地区细颗粒物(PM2.5)浓度改善速度放缓,而臭氧(O3)污染不断加剧,PM2.5和O3的协同控制对于京津冀地区空气质量持续改善十分关键且紧迫. 通过构建京津冀地区城市层面可计算一般均衡模型(CGE),模拟了PM2.5和O3的共同前体物—NOx和VOCs的边际减排成本曲线,进而构建了京津冀地区PM2.5和O3协同控制评估模型,确定了在不同空气质量目标下减排成本最小的NOx和VOCs协同减排方案. 结果表明:减排成本最小的情景下,京津冀各城市PM2.5和O3浓度达到《环境空气质量标准》(GB 3095—2012)二级标准限值时;NOx和VOCs的排放量需较2017年分别降低25%~67%和22%~60%,需要投入的总减排成本为992.9×108元. 研究显示,基于京津冀地区城市政策仿真平台构建的PM2.5和O3协同控制评估模型,可为京津冀地区PM2.5和O3协同控制方案的制定提供参考.   相似文献   

7.
葛岂序  刘岩  杨洪  郭恒亮 《环境科学》2022,43(4):1697-1705
PM2.5是雾-霾中的主要成分,河南省已成为PM2.5污染防治重点地区之一.基于2015~2019年河南省PM2.5浓度数据,使用空间自相关和空间热点探测方法分析其时空特征,引入地理探测器方法分析气象因素、空气质量因素和社会因素对PM2.5浓度的解释力度.结果表明,河南省2015~2019年PM2.5浓度整体呈现降低趋势,高污染天数减少和低污染天数增加,高污染逐步向中污染转化;PM2.5浓度具备明显的空间聚集特征,全局空间自相关指数先降后升,空间热点集中在豫北地区(安阳市、鹤壁市、新乡市和焦作市),空间冷点集中在豫西地区(三门峡市、洛阳市和南阳市);空间重心转移呈现出北上的趋势;单因子探测显示,在9个影响因子中,土地利用类型(解释力度为0.511,下同)、降水量(0.312)和NO2浓度(0.277)是影响PM2.5浓度最明显的因子,其余因子影响力排序为PM10浓度(0.255)、温度(0....  相似文献   

8.
长三角地区PM2.5区域性污染时空变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为定量分析长三角地区PM2.5区域性污染的变化特征,建立适用于长三角地区的PM2.5区域污染划分标准,基于2015—2020年长三角地区41个城市日均ρ(PM2.5)开展区域污染变化趋势研究,并针对长三角PM2.5重度区域污染开展了时空变化以及网络特征分析. 结果表明:①2015—2020年长三角三省一市年均ρ(PM2.5)降幅均在25%以上,城市ρ(PM2.5)分布呈北高南低的特征,南北城市之间ρ(PM2.5)差异较大,ρ(PM2.5)最高值与最低值相差35~46 μg/m3. ②2015—2020年长三角PM2.5区域污染天数比例为16.9%~35.9%,以轻度污染为主,不同年份中度和重度污染天数比例差异较大,且主要出现在秋冬季,轻度、中度和重度污染天数均呈波动下降趋势. ③与2015年相比,2019年和2020年PM2.5区域污染天数分别减少了38和69 d,且PM2.5重度区域污染持续天数和重度及以上污染城市数量均呈减少趋势. ④PM2.5重度区域污染日,长三角城市之间表现出较强的污染关联性,并可划分为4个子群. 以连云港市为代表的子群1位于长三角地区北部,PM2.5污染相对较重,受长三角区域内输送影响较小,但对区域内其他城市有一定的输送影响;以宁波市为代表的子群2和以南京市为代表的子群4受长三角区域内输送影响较大,并指示了东路沿海和中路两条污染传输通道;以安庆市为代表的子群3位于内陆地区,污染独立性相对较强,受长三角区域内输送影响较小,同时对长三角其他城市影响也较小. 研究显示,长三角地区PM2.5污染改善显著,但重度区域污染尚未消除,中北部城市的联防联控将对改善PM2.5区域污染起积极作用.   相似文献   

9.
为探究天津市各季节PM2.5与O3污染的非本地源贡献情况,本文以2017—2019年为研究时段,应用HYSPLIT模型,基于MeteoInfo软件对不同季节气流后向轨迹进行聚类分析,通过计算潜在源贡献因子(potential source contribution function, PSCF)、浓度权重轨迹(concentration-weighted trajectory, CWT)对天津市PM2.5与O3污染的外来潜在源区以及可能的污染传输途径进行研究. 结果表明:①天津市PM2.5和O3污染均较为严重,且具有明显季节性特征. 天津市各季节的气流变化明显,春、秋两季以西南方向气流为主,夏季以来自渤海的气流为主,冬季则以西北方向气流为主. ②天津市西南方向气流在各季节对应的污染物浓度均较高,春、秋两季西南方向气流携带的ρ(PM2.5)和O3浓度8 h滑动平均值〔简称“ρ(O3-8 h)”〕均最高;夏季,西南方向气流携带的ρ(O3-8 h)最高;冬季,西南方向轨迹携带的ρ(PM2.5)最高. ③西南方向上河北省南部的邯郸市,山东省西部的菏泽市、聊城市,以及河南省北部的开封市、濮阳市、新乡市均为天津市PM2.5与O3污染的主要潜在源区. 此外,冬季张家口市和唐山市对天津市PM2.5污染的潜在影响也较大. 冬季影响天津市PM2.5污染的外来潜在源区情况较为复杂,除西南气流外,其还受西北部与东部气流的影响. 研究显示,天津市大气污染区域联防联控需重点关注河北省南部、河南省北部以及山东省西部城市的潜在输送影响.   相似文献   

10.
为研究长三角背景点夏季PM2.5污染特征,于2018年5月30日—8月15日在上海市崇明岛对PM2.5样品进行昼夜采集,并对其中水溶性无机离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)进行了分析.运用PSCF(潜在源贡献)方法判别污染物排放源区,并结合PCA(主成分分析)和PMF(正交矩阵因子)源解析探究PM2.5来源.结果表明:①观测期间崇明岛ρ(PM2.5)平均值为(33±21)μg/m3,低于GB 3095—2012《环境空气质量标准》一级标准限值(35 μg/m3),但在部分时段存在显著超标现象,ρ(PM2.5)最高值在120 μg/m3以上.②水溶性无机离子质量浓度平均值为(14±9.3)μg/m3,占PM2.5的42.4%,其中SNA(SO42-、NO3-、NH4+三者统称)为主要离子,占水溶性离子总质量浓度的85.7%.③n(NH4+)/n(SO42-)(NH4+与SO42-的摩尔浓度比)显示,清洁期〔ρ(PM2.5) < 15 μg/m3〕呈贫铵状态,过渡期〔15≤ρ(PM2.5)≤35 μg/m3〕和污染期〔ρ(PM2.5)>35 μg/m3〕均呈富铵状态;过渡期SNA主要以NH4HSO4和NH4NO3形式存在,而污染期则主要以(NH4)2SO4和NH4NO3形式存在.④通过对两次典型污染事件进行离子相关性分析和PSCF分析发现,E1污染事件(5月30日—6月8日)为局地生物质燃烧型污染事件,E2污染事件(7月23日—8月1日)为区域传输污染事件.源解析结果进一步表明,两次典型污染事件期间气态污染物的二次转化对PM2.5的贡献最显著,贡献率分别为62.8%和59.8%;其次是生物质燃烧,其贡献率分别为32.5%和20.1%;E2污染事件期间海盐源对崇明岛PM2.5贡献率较高(16.6%),远超过E1污染事件期间对PM2.5的贡献率(2.7%).研究显示,区域输送对崇明岛PM2.5有显著贡献,二次颗粒物累积是崇明岛PM2.5超标的主要原因.   相似文献   

11.
中国典型城市群PM2.5污染特征研究进展   总被引:5,自引:2,他引:3       下载免费PDF全文
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,城市群之间的相互影响和传输机制尚不清楚.建议今后的研究向以下几个方面扩展:①对城郊乡村等大气背景点,以及水库、湖泊等地化循环的重要源汇区域开展研究.②针对同一区域开展采样时段更长且研究方法和分析手段上保持一致的研究.③借用国外经验公式时需考虑我国国情,对基础研究方法开展一系列优化,建立符合我国国情的标准化研究方法.   相似文献   

12.
京津冀城市群冬季二次PM2.5的时空分布特征   总被引:1,自引:1,他引:0  
二次组分是造成京津冀城市群冬季PM2.5污染的重要因素.采用CO示踪法,估算2017~2021年冬季京津冀城市群二次PM2.5浓度,并分析其时空分布特征,探讨区域二次PM2.5的影响因素.结果表明,2017~2021年冬季京津冀区域PM2.5浓度下降趋势明显,河北中南部一次PM2.5下降幅度最大,二次PM2.5浓度年际波动平稳,北京和天津二次PM2.5占比明显高于其他城市.随着污染程度加剧,一次PM2.5和二次PM2.5质量浓度均有不同程度的增加,二次PM2.5占比呈显著增大趋势.与直接测量结果相比,CO示踪法获得的结果偏低,与冬季CO浓度较高,一次PM2.5浓度高估有关,选取合适的一次气溶胶基准值是改进该方法,获取合理估算值的关键.  相似文献   

13.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

14.
采用CMAQ模式和自适应偏最小二乘回归法相结合的动力-统计预报方法,对2014年1—12月全国252个环境监测站的PM_(2.5)浓度逐时预报值进行了滚动订正,分析了订正前后PM_(2.5)浓度的时空变化特征,重点研究该方法在中国不同地区不同季节的适用性.结果表明:CMAQ模式预报的PM_(2.5)浓度年平均和秋冬季季节平均偏差表现为非均匀空间分布特征,即辽宁、山东部分地区、川渝地区及华中、华东、华南大部分地区预报偏高,京津冀和西部大部分地区预报偏低;订正后PM_(2.5)浓度与实测值的空间分布较一致,上述偏高和偏低地区的PM_(2.5)浓度预报误差显著减小;秋冬季PM_(2.5)浓度预报和订正偏差均大于年平均值.全国区域平均PM_(2.5)浓度实测值存在明显的季节变化特征,1—3月和11—12月较大,其他月份较小;PM_(2.5)浓度预报误差较大,多数时刻预报偏低,尤其是1—3月和11—12月偏低较明显;订正后PM_(2.5)浓度与实测值较接近,而且时间变化趋势较一致,秋冬季PM_(2.5)浓度预报和订正偏差亦明显大于春夏季.秋冬季4个重点污染区域中,京津冀地区PM_(2.5)实测浓度的区域平均值较大,川渝地区次之,长三角和珠三角地区较小;珠三角地区PM_(2.5)浓度预报和订正效果较好,川渝和长三角地区次之,京津冀地区相对较差;经滚动订正后,全年和秋冬季时段PM_(2.5)浓度订正值与实测值的相关系数均显著增加,误差显著减小,尤其是秋冬季订正效果较好.川渝地区的订正改进幅度最大,长三角和京津冀地区次之,珠三角地区较小.本文方法均适用于非污染日和污染日全国范围的PM_(2.5)预报浓度订正,两种天气过程PM_(2.5)浓度的订正效果均较好;该方法对于改进京津冀地区污染日的PM_(2.5)浓度预报更有效,其他3个地区非污染日的订正改进效果优于污染日.本文研究结果可为改进空气质量预报、重霾污染天气预警和防治提供新技术途径和科学依据.  相似文献   

15.
罗毅  邓琼飞  杨昆  杨扬  商春雪  喻臻钰 《环境科学》2018,39(7):3003-3013
近20年来PM_(2.5)污染严重制约了中国可持续发展.长时间序列历史监测数据的缺失阻碍了相关研究.为此,本文以四大典型区域2013~2016年的PM_(2.5)浓度监测值和2000~2016年MODIS AOD数据、边界层高度、温度等气象数据作为基础数据,将反向人工神经网络和支持向量回归机两种算法相结合,构建组合模拟模型,并利用地理空间分析技术实现近20年来PM_(2.5)浓度历史变化过程的情景再现.研究结果表明,组合模型具有较低的误差和更高的泛化能力;时空分析结果表明,2000~2010年京津冀和东三省PM_(2.5)浓度持续增长,珠三角PM_(2.5)浓度缓慢下降,3个研究区PM_(2.5)污染范围呈扩大趋势,长三角PM_(2.5)浓度值及污染范围基本保持稳定.2012年4个研究区PM_(2.5)浓度值降低且污染范围缩小,但2013~2016年PM_(2.5)浓度略微上升后又下降,高污染范围缩小,这与国家采取PM_(2.5)区域联防等治理措施有关.  相似文献   

16.
为揭示京津冀地区高精度PM2.5的时空分布特征,以空间分辨率为1 km的MAIAC AOD数据为主要预测因子,以气象数据、植被指数、夜间灯光数、人口密度和海拔数据作为辅助因子,构建了一种新的时空混合效应模型(STLME),在拟合最优次区域划分方案基础上对京津冀地区PM2.5浓度进行预测分析.结果表明,基于STLME模型的ρ(PM2.5)预测精度高于传统的线性混合效应模型(LME),其十折交叉验证(CV)R2为0.91,明显高于LME模型的0.87,说明STLME模型在同时校正PM2.5-AOD关系的时空异质性方面具有优势.最优次区域划分方案识别出PM2.5-AOD关系的空间差异,并结合缓冲区平滑方法,提高了STLME模型预测精度.京津冀PM2.5浓度时空变化差异显著,高值区主要分布在以石家庄、邢台和邯郸为中心的河北南部,低值区则位于燕山-太行山区;冬季PM2.5污染最严重,其次是秋季和春季,夏季污染最轻.STLM...  相似文献   

17.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

18.
李沈鑫  邹滨  张凤英  刘宁  薛琛昊  刘婧 《环境科学》2022,43(10):4293-4304
针对地面站点监测数据难以支撑大气PM2.5与O3污染防控区边界划定的问题,融合大气污染浓度遥感估算建模与GIS统计分析模型,提出了一种基于PM2.5和O3浓度遥感估算结果的协同防控区精细划定方法,开展了2015~2020年月和年尺度的全国PM2.5与O3污染协同防控成效定量分析与防控区精细划定研究.结果表明,2015~2020年,我国PM2.5浓度总体下降显著但O3浓度基本持平,PM2.5污染在秋冬超标严重,O3污染则在春夏;同时PM2.5与O3浓度变化在空间上的不一致性显著,其中PM2.5下降且O3上升、PM2.5与O3均下降、PM2.5与O3均上升和PM2.5上升O3下降的面积占比分别为38.34%、35.12%、15.24%和10.89%.遥感精细划定范围显示,PM2.5和O3协同防控区域的边界具有显著动态变化特征,在时间变化上呈现先扩大后缩小的趋势,主体范围集中在"2+26"城市、汾渭平原、长三角北部和山东半岛.以PM2.5或O3单一防控为主的区域范围较为稳定,辽吉、鄂湘赣、成渝和塔克拉玛干沙漠-河西走廊区域需以PM2.5防控为主,珠三角、长三角和环渤海湾部分区域则应以O3防控为主.基于卫星遥感手段的PM2.5和O3协同防控区域边界精细划定方法可更好辅助国家PM2.5和O3协同防控策略制定需求.  相似文献   

19.
京津冀重霾期间PM_(2.5)来源数值模拟研究   总被引:5,自引:1,他引:4  
厘清PM2.5的来源是开展重霾污染防治的前提条件.本研究利用嵌套网格空气质量预报模式系统(NAQPMS)及其耦合的污染来源追踪技术,针对2013年1月我国中东部的重霾污染过程,定量模拟分析京津冀各城市PM2.5浓度的来源和相互贡献.研究结果表明,NAQPMS模式能够合理反映京津冀不同城市PM2.5浓度的变化特征.京津冀各城市近地面PM2.5浓度主要受本地排放影响,本地贡献率介于29.8%~63.7%.而800 m高空层各城市PM2.5浓度以外来贡献为主(69.3%~86.3%).在污染最严重的东南部地区(包括邢台、邯郸、沧州和衡水),PM2.5浓度受区域外的山东和河南的显著影响,贡献率可达25.2%~31.5%.因此,在京津冀区域内进行协同减排控制的同时,需进一步将山东、河南等省份纳入联防联控范围,才能有效防控重霾污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号