首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
王莹  智协飞  白永清  董甫  张玲 《环境科学》2022,43(8):3913-3922
作为一个新的区域性霾污染中心,长江中游地区地理位置特殊,是我国中东部地区大气污染物区域传输的重要枢纽,天气环流对该区域不同传输和累积型PM2.5重污染的形成机制还不甚了解.利用T-mode斜交旋转主成分分析法(PCT),对2015~2019年采暖季长江中游地区74 d PM2.5重污染事件进行天气环流分型,得到:PCT1高压底部传输型(天数:41 d,占比:55.4%)、PCT2低压辐合累积型(天数:12 d,占比:16.2%)、PCT3高压静稳累积型(天数:11 d,占比:14.9%)和PCT4高压后部传输型(天数:10 d,占比:13.5%)这4种主要的大气环流类型.区域传输型污染(PCT1和PCT4)占比高达69%,是长江中游地区PM2.5重污染发生的主导因素,突显了地域特殊性.其中,PCT1是最主要的环流型,冷锋南侵伴随强偏北风驱动上游地区污染物快速传输,使得PM2.5浓度暴发式增长.境内传输通道城市襄阳、荆门和荆州PM2.5传输过程具有12 h滞后特征,其PM2.5影响源区主要分布在上游的河南中北部、山东西部和华北大部分地区.PCT4传输型受低层偏东风输送影响,污染上升速率也相对较快.PCT2和PCT3为静稳天气环流型,地面风速较小,低层水平辐合和下沉运动有利本地PM2.5重污染累积,污染上升速率和持续时间都相对传输型更长.  相似文献   

2.
秦阳  胡建林  孔海江 《环境科学》2024,45(2):626-634
基于2015~2019年南京细颗粒物(PM2.5)和臭氧(O3)逐小时浓度数据,通过T-mode主成分分析法对南京发生PM2.5和O3污染同时高浓度并存(双高污染)时的天气形势进行了分型,利用后向轨迹聚类分析法、潜在来源贡献法(PSCF)和浓度权重轨迹分析法(CWT)研究不同天气形势对南京双高污染的输送路径及潜在源区分布.结果表明,有利于南京地区双高污染的天气形势分别为弱的低压型(Type1)和高压中心型(Type2).天气形势会对后向轨迹的方位来源产生影响.Type1时,南京地区受到东北和西南两个低气压影响,气团的聚类轨迹主要来自东西两个方位,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为83.48 μg·m-3和106.85 μg·m-3.Type2时,南京及其周边在高压中心边缘,气团聚类轨迹主要来自北方和东方,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为94.47 μg·m-3和92.32 μg·m-3.同时两种类型后向轨迹绝大部分属于中短距离区域输送,说明周边临近省份的污染是影响南京地区双高污染主要原因之一.PSCF和CWT分析表明,两者高值区域基本保持一致.Type1和Type2两种类型中PM2.5和O3的最主要潜在源区均出现分布并不完全一致的情况,表明双高污染中的两种污染物并非来自同一地区.  相似文献   

3.
基于主成分分析和FCM聚类的行驶工况研究   总被引:1,自引:0,他引:1  
在定义了运动学片段的基础上,对典型道路上采集的大量工况试验数据进行划分,从而获得大量运动学片段.用主成分分析法对12个表征道路运行特征的参数(包括加速比例、减速比例、匀速比例、怠速比例、平均速度、平均运行速度、最大速度、平均加速度、最大加速度、最小加速度、速度标准偏差和加速度标准偏差)进行压缩,得到4个主成分.利用模糊C均值聚类技术对所有运动学片段的第一和第二主成分得分进行分类,根据相关系数的大小及各类别的时间长度比选取合适片段,最终拟合出代表性工况.通过对特征参数和速度、加速度联合概率分布的误差分析可知,所提出的构建方法精度较高,拟合工况能综合反映合肥市实际道路的交通状况.   相似文献   

4.
长江口水域富营养化特性的探索性数据分析   总被引:7,自引:4,他引:3  
根据2004年2、5、8、11月长江口及邻近海域的调查结果,选择8个与富营养化有关的特征参数,包括营养盐浓度(NO-3、NH+4、PO3-4、TN、TP)、化学耗氧量、叶绿素a浓度和浮游植物细胞丰度等,应用探索性数据分析方法对该海域富营养化特性进行研究.主成分分析表明,主成分1主要反映氮营养盐和有机污染状况;主成分2反映浮游植物生物量;主成分3体现磷营养盐特点.主成分1从口门内到口门外存在降低的趋势,表明氮营养盐和有机污染主要来源于长江输入.受人类排污影响,主成分1在吴淞口、石洞口和白龙港排污口附近最高.冬季口门内各站位的氮营养盐和有机污染最为严重.春夏季的3个主成分均高于秋冬季,因此春夏季富营养化更为严重.主成分1与盐度之间在秋冬季具有较好的线性关系,在一定程度上可根据盐度预测长江口海域各站位的主成分1,即氮营养盐和有机污染状况.硝酸盐、总氮、总磷和浮游植物细胞丰度等是控制长江口水域富营养化水平时空变化的主要驱动因素.  相似文献   

5.
为客观评价汾河太原城区段11个监测断面的水质污染程度,并找出其最主要的污染物,采用主成分分析法对其7项水质指标进行分析评价。通过水质综合评价结果显示:污染最严重的是南沙河和虎峪河,其中最主要的污染物为NH3-N;汾河1段污染最轻,水质稍好。  相似文献   

6.
本文采用主成分分析法,对贵州省开阳县的9个地下暗河出口及岩溶泉的水质进行综合分析,选取其中具有代表性的13个实测数据进行定量化评价。结果表明,除城关镇石头村由于受到Fe、Na+等污染导致水质较差以外,该地区地下水水质总体都较好,与实际情况相符合,评价结果能为水资源合理开发利用和水污染的综合防治提供参考。  相似文献   

7.
于2019年冬季(1月)和夏季(7月)对兰州市大气PM2.5进行了连续采集,并结合同时期的气象资料分析了PM2.5化学组分(有机碳、元素碳、水溶性离子)特征及来源.结果表明,冬季OC浓度为11.58~45.42 μg·m-3,EC浓度为3.25~13.90 μg·m-3,夏季OC、EC浓度分别为8.42~23.08、2.85~7.93 μg·m-3,OC浓度总体高于EC,在PM2.5中占到了更高的比重.冬季平均OC/EC为3.24,夏季平均OC/EC为2.75,表明有二次气溶胶SOC生成,且机动车排放与冬季燃煤供暖为其主要污染源.冬季OC和EC相关系数为0.94,夏季为0.66,夏季相关系数较低表明其污染来源较冬季复杂.SO42-、NO3-、NH4+、Ca2+是大气PM2.5中最重要的4种水溶性离子,这4种离子在冬季和夏季分别占到总水溶性离子的84.56%和90.16%,占PM2.5的45.6%、14.5%.主成分分析法、后向轨迹及浓度权重结果表明,兰州市PM2.5主要的污染源除了受本地化石燃料燃烧、机动车尾气、生物质燃烧排放、土壤和建筑粉尘的影响外,还可能受到内蒙古高原和新疆塔克拉玛干沙漠等地远距离传输的影响.  相似文献   

8.
为研究上海春季近地面臭氧污染的区域性特征,对长三角地区55个城市国控站点及上海市54个城市监测站点2016年5月的臭氧监测网络数据进行主成分分析(Principal Component Analysis,PCA),并将分析结果与气象条件进行综合分析,结果表明,主成分分析在不同的空间尺度下可以解析出行为模式不同的臭氧生成及传输来源主成分,且在较大的空间尺度下可以解析出区域背景臭氧浓度.长三角地区春季区域臭氧特征复杂,存在9个主成分,第一主成分所能解释的背景臭氧浓度在68.8~154.7μg·m~(-3)之间,而上海市主成分解析结果较为集中,仅能解析出两个主成分,且第一主成分即可解释90.5%的臭氧.对比同时段长三角及上海市主成分分析解析结果,上海市春季臭氧污染主要受到来自海洋的东南风影响,高浓度臭氧污染的本地生成贡献显著.  相似文献   

9.
主成分分析法用于环境质量评价的探讨   总被引:4,自引:0,他引:4  
文章将主成分分析法用于某河流水质评价,得出该河流历年水质变化趋势,但得到的水质评价等级却与实际情况不符。通过对主成分分析法原理进行研究,得出两个结论:主成分分析法可用于比较不同时间或不同地点的环境质量优劣;主成分分析法不能评价出环境质量等级。这主要是由主成分分析法的本质特点所决定。  相似文献   

10.
基于主成分分析法的武烈河流域水质评价研究   总被引:1,自引:0,他引:1  
利用MATLAB软件,采用主成分分析法对武烈河流域水环境质量进行了综合评价.结果表明:武烈河流域水环境质量整体相对较好,高寺台下游断面的水质污染比较严重,五日生化需氧量和溶解氧的主成分贡献率超过0.5,说明流域有机污染严重,需要控制工农业废水排放,以遏制污染加剧、预防富营养化爆发.  相似文献   

11.
基于空气质量数据、天气图、常规地面气象观测数据、秒探空资料以及高分辨率的降水数据,剖析了2015年12月19—27日发生在我国东部地区的一次大范围重度污染过程的特征及成因.结果表明,此次污染过程中,我国东部地区主要受到东路冷高压、均压场以及西路冷高压的影响,在东路冷空气及均压场的影响下,BTH(Beijing-Tianjin-Hebei)地区污染物不断累积,西路冷空气影响下污染物浓度开始降低,YRD(Yangtze River Delta)地区在稳定的均压场下污染物不断累积.污染期间,BTH及YRD近地层均有逆温现象发生,且逆温层越厚、强度越大,污染越重.此外,较低的近地面风速、较高的相对湿度,亦不利于污染物的扩散稀释,导致此次重度污染事件的发生和持续.YRD地区在重度污染发生时,有降水现象发生,导致YRD地区PM2.5浓度呈现波动性变化.  相似文献   

12.
基于ERA-Interim再分析资料、大气污染资料以及气象资料,利用T-mode主成分分析法(PCT)将成都地区2016~2018年PM2.5污染严重的1、2、11、12月份的海平面气压场和10m风场分成8种天气类型,分析不同天气类型下的空气污染状况及污染气象参数特征,进而从污染气象学的角度揭示重污染天气类型下的气象特征和潜在污染来源,结果表明:①成都地区在高压后部型、低前高后型、鞍型场、北方高压底部型中PM2.5污染会加重,属于污染型天气类型,而在西路冷锋前部型、高压边缘型、西北高压底部型、东路冷锋前部型中,PM2.5污染显著减弱,属于清洁型天气类型.②在污染型天气类型下,成都地区出现的逆温层较强,混合层高度较低均不利于PM2.5的扩散稀释,且边界层内南风分量明显增大,东北风减弱,边界层通风量(VI)较小,风场对污染物的扩散能力也较弱.③对污染天气类型下成都的PM2.5污染输送与潜在来源进行研究,认为成都南部及西南部地区在各个污染天气类型下都对其PM2.5的质量浓度有明显的影响,另外在鞍型场天气类型下,成都东部及东北部地区也是成都PM2.5污染的源区之一,而在北方高压底部型中,成都地区的PM2.5主要受到其周围地区的影响,外地的污染物输入较少.  相似文献   

13.
基于天气背景天津地区重污染天气特征分析   总被引:5,自引:2,他引:3  
以天津地区长序列观测PM_(2.5)质量浓度资料为依托,基于天气背景对2014—2016年天津地区重污染天气特征进行分析,并以此为基础评估天津环境气象数值模式(WRF/Chem)在不同天气条件下的模拟效果.结果显示:2009—2016年天津地区重污染天气为341 d,约占全部天数的11.7%,重污染天气主要出现在每年的10月—次年3月,约占全年的82%,重污染天气出现的地面形势主要为锋前低压区、低压槽前、均压场和高压后,4类天气类型占所有重污染天气的73%.同一天气背景下,PM_(2.5)质量浓度模拟值与实况值之间的误差有相似之处,低压槽天气时细颗粒污染浓度模拟明显偏低;冷锋前低压区、华北地形槽和低压过程模拟值略有偏低;高压前和高压底天气模拟值略微偏高;数值模式天津地区重污染TS(Threat score)评分为0.68,漏报与低压槽辐合线模拟位置偏差、冷空气受污染反馈作用影响、小尺度闭合低压区未准确模拟3个因素密切相关;空报主要与冷空气过程影响时间模拟偏差、高压中心位置偏差及其输送通道建立时间影响密切相关.  相似文献   

14.
汾渭平原受其复杂地形特征及产业结构影响,和京津冀、长三角地区一起被列为大气污染重点防治区域.本研究应用2014—2019年冬季中国环境监测总站汾渭平原各城市的六大空气污染物逐小时数据,结合欧洲中心ERA-5数据,利用HYSPLIT后向轨迹模型及T-model斜交旋转主成分分析法(PCT),揭示过去6年汾渭平原冬季颗粒物浓度演变规律,厘清汾渭平原复杂地形影响下大气污染来源特征、潜在源区及成因,识别影响汾渭平原冬季空气污染的主要天气系统类型.HYSPLIT模拟结果表明,冬季喇叭口地形城市主要受本地和邻近区域污染源影响;山区盆地地形城市更易受到100~300 km距离以内污染源的传输影响,其中,来自陕北的气团对其影响最大;峡谷地形城市更易受到300~600 km范围内污染源的传输影响;平原地形城市的污染物浓度受区域传输的影响较大.影响汾渭平原冬季颗粒物重污染的天气系统可分为高压前部型、高压后部型、均压场型及低压倒槽型,其中,高压前部型是汾渭平原冬季重污染时段最易出现的天气形势.  相似文献   

15.
利用地面常规气象观测资料、NCEP(National Centers for Environmental Prediction)再分析资料、AQI(空气质量指数)、ρ(PM2.5)、ρ(PM10)等大气环境监测数据,对2016年12月江苏省连续出现的两次大范围大气污染过程进行了对比分析.结果表明:这两次连续污染天气过程可分为颗粒物积聚-清除-再积聚-彻底清除4个阶段,相应地,地面形势表现为均压场-低压倒槽-西路冷空气-东路冷空气.第1次污染天气形成和维持主要是长时间受均压场控制、近地层逆温和高相对湿度有利于颗粒物积聚;第2次污染天气形成和维持主要是因西路冷空气南下、上游重污染地区颗粒物随冷空气向江苏省输送.持续降水和持续2.0 m/s以上偏东风对大气中颗粒物有较明显的清除作用.淮北西部垂直、水平扩散条件差、降水清除时间短,导致该地区在全省污染等级最严重、持续时间最长.西路冷空气影响期间,各站颗粒物质量浓度转为快速上升,东部地区在偏西风持续49~58 h后空气质量改善为良,中西部地区无法得到有效改善;东路冷空气影响7~22 h后,中西部地区空气质量转为良,高压底部持续偏东风使全省颗粒物得到彻底清除,连续污染天气结束.研究显示,西路弱冷空气的输送会加剧江苏省的污染程度,持续较长时间的东路冷空气则可以改善江苏省的空气质量.   相似文献   

16.
The formation and development of weather events has a great impact on the diffusion, accumulation and transport of air pollutants, and causes great changes in the particulate pollution level. It is very important to study their influence on particulate pollution. Lanzhou is one of the most particulate-polluted cities in China and even in the world. Particulate matter (PM) including TSP, PM>10, PM2.5-10, PM2.5 and PM1.0 concentrations were simultaneously measured during 2005-2007 in Lanzhou to evaluate the influence of three kinds of weather events - dust, precipitation and cold front - on the concentrations of PM with different sizes and detect the temporal evolution. The main results are as follows: (1) the PM pollution in Lanzhou during dust events was very heavy and the rate of increase in the concentration of PM2.5-10 was the highest of the five kinds of particles. During dust-storm events, the highest peaks of the concentrations of fine particles (PM2.5 and PM1.0) occurred 3 hr later than those of coarse particles (PM>10 and PM2.5-10). (2) The major effect of precipitation events on PM is wet scavenging. The scavenging rates of particles were closely associated with the kinds of precipitation events. The scavenging rates of TSP, PM>10 and PM2.5-10 by convective precipitation were several times as high as those caused by frontal precipitation for the same precipitation amount, the reason being the different formation mechanism and precipitation characteristics of the two kinds of precipitation. Moreover, there exists a limiting value for the scavenging rates of particles by precipitation. (3) The major effect of cold-front events on particles is clearance. However, during cold-front passages, the PM concentrations could sometimes rise first and decrease afterwards, which is the critical difference in the influence of cold fronts on the concentrations of particulate pollutants vs. gaseous pollutants.  相似文献   

17.
基于天气背景天津大气污染输送特征分析   总被引:8,自引:7,他引:1       下载免费PDF全文
蔡子颖  杨旭  韩素芹  姚青  刘敬乐 《环境科学》2020,41(11):4855-4863
区域输送是大气污染防治中需要考虑的重要因素,本文利用大气化学模式定量估算2016年10月~2017年9月区域输送对天津的影响,重点基于天气背景分析区域输送影响和气象条件的关系,为京津冀地区大气污染联防联控提供支撑.结果表明,京津冀地区各城市区域输送贡献百分率平原城市显著高于沿山城市,天津一次PM2.5本地贡献62.9%,区域输送贡献37.1%,主要受沧州、廊坊、河北中南部、北京、唐山和山东等地输送影响,每年4~6月区域输送最显著,7~8月区域输送最弱.区域输送与天气形势、风场和降水等气象条件密切相关,高压后和锋前低压是区域输送占比最高的两种污染天气类型,西南风、西风和南风3个风向下天津大气污染输送影响最为明显,风速2~3 m ·s-1时最有利于PM2.5区域传输,降水超过5 mm以上将降低大气污染物区域传输效率.对于不同污染类型和重污染阶段,轻度污染天气时区域输送贡献最为明显,比均值偏高20.5%,重污染天气虽受静稳气团控制,但由于周边区域高浓度的PM2.5,污染气团迁移对区域内污染聚集传输有显著影响,重污染期间PM2.5输送贡献占比超过均值,约偏高10%~15%.重污染过程中,开始积累阶段和峰值阶段,输送贡献占比高于其它时期,与暴发阶段相比偏高14.5%和19.5%,重污染暴发阶段本地排放贡献更明显,比均值偏高9.9%.  相似文献   

18.
我国北方秋冬季节的空气重污染过程已经成为影响人们生活的重大环境事件,不仅受到公众和科研工作者的广泛关注,也已成为各地各部门政策制订者最为重视的关键问题之一.针对众说纷纭的空气重污染过程的形成机理、治理方案、控制对策等,利用2013-2016年秋季(9-11月)中国环境监测总站公布的逐时空气质量监测数据,重点对北京奥体中心站的空气重污染过程的演变进行了分析.结合中国气象局发布的天气形势分析图,系统地分析了我国4 a来秋冬季节出现大范围空气重污染过程的气候背景.结果表明:秋季我国东北和华北地区出现持续时间长、影响范围广的空气重污染过程,除了排放源的影响之外,天气形势同样起着重要作用. 2013-2016年秋季北京奥体中心的PM2.5污染状况仍以优良天气为主,其间中度及以上污染的持续时间虽然不长,但其影响[高ρ(PM2.5)]也不容忽视.秋季北京奥体中心ρ(PM2.5)日均值超标(二级)日数占25.8%,其中2014年最为严重,超标日数达44 d,占37.4%.通过对空气重污染过程与我国传统节气的对比分析发现,入秋后我国北方首次出现持续48 h以上的空气重污染过程分别是在秋分和寒露两个节气,而最严重的空气重污染过程则出现在寒露和霜降两个节气.从时间序列来看,4 a来北京奥体中心ρ(PM2.5)没有特别显著的改善,优良时数占60%左右,而中度以上的污染时数则维持在25%左右,但严重污染事件[ρ(PM2.5)≥ 250 μg/m3]的有效时数则有明显的变化.此外,白天污染物的浓度明显低于夜晚.研究还发现,西伯利亚高压指数的异常偏低往往会导致持续时间长、影响范围广和污染强度强的重度污染事件.   相似文献   

19.
通过分析肇庆市2013—2018年国控大气环境监测站的PM_(2.5)连续监测数据,发现肇庆市区PM_(2.5)浓度在干季(10月—次年4月)明显高于其余月份,轻度以上污染基本发生在干季,且PM_(2.5)浓度对年总浓度贡献达70.8%.基于Era-interim再分析资料采用K-means聚类分析法对2013—2018年干季逐日的海平面气压和10 m水平风进行分型,揭示了肇庆市易出现PM_(2.5)污染的6种大气环流形势,包括冷锋前部(CF)、变性高压脊(THR)、脊后槽前型(BRFT)、高压底后部(HSW)、弱冷高压脊(HR)和台风外围型(TP).2013—2016年易污染天气型影响天数呈明显减少趋势,2017—2018年呈增加趋势.不同天气型PM_(2.5)浓度与局地气象要素相关性不一致,其中CF、HR、HSW、TP天气型与湿度相关性最好,THR与风速、BRFT与气压相关性最好.PM_(2.5)污染除BRFT天气型主要以本地排放累积影响为主,其余易污染天气型存在不同尺度的外来输送影响,HSW、HR主要来自广州、清远、韶关, CF主要来自佛山、中山,THR来自广州、清远、佛山.同一污染天气型在不同月份的污染影响差异较大,其中HSW、THR污染型主要影响1月和10月,CF为1月和12月,HR为2月和12月,TP为10月,BRFT为1月和10—11月.不同年份的同一月份造成不同程度的PM_(2.5)污染除了排放影响,还与天气环流类型和同一天气型下的局地气象要素密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号