首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用Morlet小波方法分析北京市2008~2017年PM2.5资料,结果表明,北京市PM2.5浓度存在显著的日变化、周变化、以及季节和年变化周期性特征,并且秋冬季的周期性特征显著高于春夏季.结合气象资料,包括水平风速、大气边界层高度、以及大气稳定度指数等,分析PM2.5不同周期性变化对应的主要影响机制表明:大气边界层过程是PM2.5日变化的主要影响机制,导致PM2.5浓度白天低、夜间高.秋冬季PM2.5日变化幅度高于春夏季;天气过程是PM2.5周变化的主要机制,PM2.5浓度与天气变化过程带来的风速变化和边界层高度呈强反相关关系;PM2.5的季节变化与大气扩散能力的季节变化密切相关,秋冬季减弱的大气扩散能力加速了PM2.5在近地面累积,春夏季则相反.  相似文献   

2.
2014年10月北京市4次典型空气重污染过程成因分析   总被引:12,自引:0,他引:12       下载免费PDF全文
采用数值模拟与观测资料相结合的方式,对2014年10月北京市4次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析. 结果表明,京津冀区域稳定的气象条件是形成空气重污染的主要原因,4次重污染过程大气条件均不利于污染物扩散,表现为大气层结稳定,近地层逆温(平均逆温强度为2.26 ℃/100 m)明显,风速(平均值为1.52 m/s)小,相对湿度(平均值为80.75%)大. 在4次重污染过程中8—11日污染最重,ρ(PM2.5)日均值平均为264 μg/m3,并且区域输送对北京贡献率最大,平均值为63.75%;24—25日污染程度次之,逆温最强,逆温强度达5.94 ℃/100 m;18—20日重污染中北京ρ(PM2.5)高值(>200 μg/m3)区主要集中在该市西北部地区;30—31日污染相对较轻,ρ(PM2.5)日均值最高只有154 μg/m3. 数值模拟表明,在4次典型重污染过程中,来自南方(包括河北、河南和山西西部等地)的外来污染物输送对北京PM2.5贡献较大,外来贡献率分别在42.36%~69.12%之间,同时北京本地也存在较强的二次无机盐及有机物转化过程.   相似文献   

3.
选取河北省唐山市2017年12月27~31日一次典型重污染过程,开展其污染特征及成因分析,对污染期间气象要素、大气颗粒物组分特征进行综合研究.结果表明,此次大气重污染过程中PM2.5平均质量浓度为154μg/m3,重度污染及以上时PM2.5/PM10为0.7;PM2.5中SNA质量浓度占比达58.0%,OC/EC的比值为4.1,说明颗粒物二次反应和有机物在此次污染过程有较大贡献;长期均压场以及近地面高湿、小风、逆温的出现导致唐山地区大气层结稳定,加之周边地区区域传输的贡献,是导致此次大气重污染过程的重要影响因素.  相似文献   

4.
采用COST733软件将北京地区2007~2016年的大气环流总体分为T1~T9种类型,研究其与霾日的关联性,并结合PM2.5和臭氧地面观测,分析不同天气型对应的污染特征及气象参数分布规律.2007~2016年霾日发生概率21.5%,T4和T9型下霾日最多,T5和T8型最不利于霾日发生.9类天气型下霾日变化具有阶段性,2007~2012年(阶段一)霾日少且年际差异小,2013~2016年(阶段二)霾日增多.对9类天气型下霾日PM2.5及臭氧变化进行分析,T1、T3、T4和T9型霾日多出现在秋冬季,PM2.5日变化为逐时增加态势,4类天气型在第一阶段的白天有浓度波动增长形成的小峰值,但第二阶段减弱消失.大部分天气型的霾日,阶段二的PM2.5浓度较阶段一降低,T7和T9型表现为增加,增幅分别为23.7%和3.9%.所有天气型霾日的臭氧日变化均为单峰型,峰值出现在下午,臭氧日均浓度最高为T8型.此外,阶段二与阶段一相比,T3、T5和T6型臭氧平均浓度增加,其中T5型增幅达到49.8%.将霾日与近地面气象要素关联分析,平均气温、风向、风速可以较好的解释臭氧浓度变化,而PM2.5的变化特征不仅与气象要素相关,在一定程度上也体现了污染排放及区域联动减排的贡献,需两者结合才能更好探究PM2.5浓度整体特征及细节变化.  相似文献   

5.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

6.
利用2013~2019年上海宝山观象台08:00时高分辨率气象探空资料识别SBI并计算其3个指标(垂直温差、厚度、强度),发现在易污染月份(11月、12月、1月、2月)上海早晨SBI的发生频次为35.7%,垂直温差、厚度、强度分别为3.7℃、118m、3.6℃/100m.2013~2019年出现接地逆温的频次有所下降,但其3个指标均没有显著的年变化趋势.当出现接地逆温(SBI)时,2019年易污染月份早晨的PM2.5浓度高达61.9µg/m3,较无逆温(NTI)时偏高了79%,表明SBI是促发早晨PM2.5污染的重要气象条件之一.SBI的大气动力热力条件呈现水平风速降低(69%)、边界层通风能力下降(18%~44%)、垂直层结稳定(Ri>0.25)和低温(降低42%)、高湿(上升10%)的特点,非常有利于PM2.5的局地累积和二次非均相生成,使得2013~2019年早晨的PM2.5浓度较NTI时偏高了20%~107%.PM2.5浓度与SBI的垂直温差、厚度都显著正相关,分别拟合为二次非线性关系(P<0.05),然而与强度的相关性不显著.当接地逆温的垂直温差大于4.6℃、或者厚度大于100m,PM2.5浓度超过100µg/m3,可作为判别PM2.5重污染天气的参考阈值.  相似文献   

7.
关中地区是我国大气污染的重点监测区域,为探究偏东风输送对关中地区冬季PM2.5重污染的影响,重点分析了2018年1月12-18日在偏东风输送影响下关中地区ρ(PM2.5)日均值的变化过程;利用WRF和CAMx模式对PM2.5重污染过程进行模拟并讨论其消长原因.结果表明:①冬季关中地区在高压脊和西南槽的控制下,偏东风将污染物输送至关中地区,加之关中地区地形阻滞,致使关中地区的ρ(PM2.5)上升.②研究期间,关中地区ρ(PM2.5)日均值范围为103~240 μg/m3,偏东风输送是导致此次重污染过程的重要原因.重污染的发生还与气象要素的变化有关,其中ρ(PM2.5)日均值与气温、相对湿度均呈滞后相关性.在ρ(PM2.5)日均值相等的情况下,相对湿度越大,能见度越低;随着ρ(PM2.5)日均值和相对湿度的升高,能见度下降的速率逐渐变慢.③根据WRF-CAMx的模拟结果,此次重污染过程中关中地区PM2.5污染输送关系不均衡,宝鸡市和咸阳市均以本地贡献为主,其本地贡献率超过45.00%,而渭南市接收关中地区其他城市及关中地区以外区域污染输送占比为69.82%;位于盆地中东部的咸阳市、西安市和渭南市的ρ(PM2.5)月均值均大于关中地区ρ(PM2.5)平均值;渭南市、西安市、运城市以及关中地区以外城市是此次关中地区跨市PM2.5污染输送的主要来源.研究显示,偏东风输送是关中地区此次大气重污染过程的重要原因.   相似文献   

8.
为研究南京主要大气复合污染物PM2.5、PM10和O3四季变化特征及其气象影响因子,利用2013年1月~2015年2月国控点环境监测数据对浓度特征进行统计分析,再利用WRF模式模拟的精细大气边界层气象场,分析气象要素与各污染物的相关性,并建立统计模型.结果表明:PM10、PM2.5冬高夏低,冬季日均值分别为160.6μg/m3和98.0μg/m3;日变化特征四季基本一致,但秋冬季最强,夏季最弱,且冬季上午峰值比其余三季延后1~2h.各季大气可吸入颗粒物中细粒子占主导,PM2.5/PM10年均值为0.59;首要污染物为PM2.5、PM10、O3的年频率分别为51.5%、26.6%和13.5%,PM2.5主导四季AQI的变化,尤其是在重污染的情况下,首要污染物为PM2.5占96%.O3浓度春末夏初高、秋末冬初低,日变化为单峰式;O3与边界层高度呈显著正相关,四季相关系数分别为0.500、0.572、0.326、0.323.四季PM10、PM2.5、O3_8h_max日值逐步回归方程拟合度为40%~65%.  相似文献   

9.
北京市秋冬季大气环流型下的气象和污染特征   总被引:1,自引:0,他引:1  
分析了北京市2013~2018年秋冬季(即当年11、12月和次年1、2月份)11种环流型的地面和垂直气象特征,归纳出5类大气环流条件,探讨了不同环流型下北京地区的大气传输规律以及环流型与北京PM2.5污染之间的关系.在5类大气环流条件中,第I类(含北(N)、东北(NE)环流型,天数占比28%)和第Ⅱ类(含西北(NW)、反气旋(A)环流型,占33%)有利于传输扩散,以西北风为主,风向较稳定,风速大,边界层高度高;第Ⅲ类(含东(E)环流型,占7%)传输扩散条件居中,边界层内以东南风为主,风向变化大,风速中等;第IV类(含西南(SW)、西(W)、南(S)3种环流型,占12%)和第V类(含东南(SE)、均压(UM)、气旋(C)3种环流型,占20%)均不利于传输扩散,边界层内以偏南风为主,风速较小,边界层高度低,低层逆温较强,第IV类近地面风向较稳定,而第V类则风向变化大.不同环流型下气团传输至北京的路径存在差异,对北京空气质量产生潜在影响的周边地区随之发生变化.大气环流型与北京市秋冬季PM2.5污染紧密关联,SW、UM、C、S和W是北京地区最易发生PM2.5污染的环流型(平均污染发生频率>75%,平均重度以上污染发生频率>42%),而在N、A、NE和NW环流型下污染发生频率最低.研究期间,PM2.5污染极端严重的月份存在UM环流型占比显著增加的共同特点,而PM2.5污染水平最低的月份N环流型占比增加近一倍.此外,PM2.5污染变化相对于环流型变化存在一定的滞后性.  相似文献   

10.
乌鲁木齐市重污染期间PM2.5污染特征与来源解析   总被引:4,自引:0,他引:4  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气. 分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.   相似文献   

11.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   

12.
为筛选京津冀及周边地区的大气环境热点网格,在卫星遥感反演获取区域灰霾天数、PM2.5、NO2和SO2浓度等大气环境四项遥感监测因子的基础上,首先利用分形求和模型确定了研究区域的四项指标的背景值和标准值,然后根据ORAQI计算方式提出一种大气环境遥感综合污染指数,并提取了大气环境热点网格,最后结合高分辨率卫星数据对热点网格的工业用地情况进行初步探讨分析.结果表明,2016年京津冀及周边地区各项大气污染物的局部分布特征表现出较大差异,不同地区的主要污染物不尽相同并且呈多项污染物复合污染的特征,利用分形统计模型确定灰霾天数、PM2.5、NO2和SO2浓度的背景值分别为10.7d、57.5μg/m3、515.7×1013mole/cm2和0.29DU,标准值分别为22.2d、112.2μg/m3、2073.1×1013mole/cm2和0.64DU.大气环境遥感综合污染指数表明大气环境综合污染相对最重的地区主要分布在保定中部、石家庄中北部及邢台南部和邯郸北部交界处,该区域共筛选出1782个大气环境热点网格,其中工业用地面积占比较低的网格单元比例相对较大,这表明小型企业生产排放对当地的大气环境质量影响较大.  相似文献   

13.
选取2015年和2019年不同代表年份,结合外场观测和数值模拟,分析了天津地区不同季节不同天气(晴天、多云、霾)下,气溶胶辐射效应对整层大气透过率和地表入射太阳辐射的影响,以及这种影响在不同年份的差异.借助WRF-Chem模式模拟分析了重污染期间气溶胶辐射效应对垂直方向上气象要素廓线、边界层结构以及PM2.5浓度的反馈机制.结果表明:霾污染可导致大气透过率明显下降,春、秋、冬不同季节,霾污染导致中午大气透过率分别下降0.09,0.11和0.09.全年平均霾污染可导致大气透过率降低约15.5%.云量的增多也可导致大气透过率明显下降,多云天气下大气透过率相比晴天减小约22.4%.霾和云对大气透过率的影响还与太阳高度角有关,当太阳高度角>60°时,霾污染导致大气透过率下降8.6%.随污染等级提高,气溶胶对太阳辐射的衰减作用也越强,天津地区空气质量分别为Ⅰ~Ⅰ级时,中午地表入射短波辐射呈稳定下降趋势,依次为484,446,439,342,328和253W/m2.重污染期间,气溶胶辐射效应导致大气低层(250m以下)降温(0.8℃)增湿(3.8%...  相似文献   

14.
武清地区冬季一次重污染过程垂直分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究京津冀地区重污染过程大气污染物的垂直分布特征,于2016年12月13日重污染前(11:49-12:18)和12月18日重污染期间(11:00-11:16)在北京市、天津市、河北省交界处的武清地区利用系留气球开展1 000 m以下的大气观测,探究污染物的垂直分布特征及对流边界层、覆盖逆温层和混合层等要素对重污染形成的影响.结果表明:①在重污染前,大气层结不稳定,ρ(PM2.5)、ρ(NOx)与ρ(O3)随高度变化不明显,存在明显的垂直对流运动,有利于大气污染物的扩散;PM2.5/PM10[ρ(PM2.5)/ρ(PM10)]在800 m以下为0.60~0.80,在800~1 000 m以上大于0.90.②重污染期间,近地面大气层分为对流边界层(距地面0~150 m)、覆盖逆温层(150~370 m)、混合层(370~500 m)和自由大气(500 m以上)4个层次.③NOx主要在对流边界层内聚积;高空O3在向近地面扩散时受强混合层阻挡,在混合层出现一个小峰值;PM2.5不仅在近地面聚积,而且在覆盖逆温层内聚积,ρ(PM2.5)在覆盖逆温层内呈双峰(峰值分别出现在150和370 m)分布,其粒径集中在0.5~1.0 μm,属于积聚态气溶胶.研究显示,在不利扩散条件下,汽车排放、村镇居民供暖排放的污染物聚积及二次颗粒物的生成是重污染形成的重要因素.   相似文献   

15.
利用空中国王飞机平台搭载单颗粒黑碳光度计(SP2)针对北京2016年12月冬季一次污染过程进行了连续观测,阐述了污染发生、发展和消散过程中的黑碳(BC)气溶胶质量浓度、粒径分布和混合状态的变化特征.结果表明,此次污染过程是以PM2.5污染为主的霾污染过程,最大值为432μg/m3.NO2、SO2和CO等气态污染物浓度经过3次污染积累阶段,为PM2.5最终爆发增长提供了物质基础.静稳的大气条件为PM2.5爆发增长提供了动力条件.污染发展过程中BC气溶胶先在地面累积增加,然后向高空传输;清除过程则是高空先被移除,低层缓慢降低.污染发展过程中北京地区黑碳气溶胶在边界层(PBL)浓度变化为先升高后减小,平均浓度为3.45μg/m3,质量中值直径(MMD)范围在190~220nm.随着污染过程的发展,气溶胶迅速老化,PBL内的BC老化比例在一天内可从27%增加到了51%,老化过程使得PM2.5质量浓度爆发增长.污染过程中BC在边界层的垂直演变导致大气加热率发生变化,有利于逆温的维持和发展,加剧了污染物过程.  相似文献   

16.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

17.
为总结出霾天气发生时的相关影响因子、特征共性,选取长三角地区8个主要城市,2016~2019年秋冬季发生的7次典型霾天气过程,对比分析了3次霾天气过程中AQI、PM2.5浓度、气象要素、天气形势、边界层特征的变化以及污染物来源.结果表明:不利的气象条件及高低空配置的静稳天气型导致霾天气的形成.3次过程AQI指数峰值分别为247、306及272,与PM2.5浓度变化趋于一致.PM2.5浓度和能见度呈明显负相关关系,且污染过程发生时能见度普遍偏低,2、3次过程能见度谷值均低于50m.高相对湿度、稳定的气温及静风与霾过程的形成有着紧密的联系.总体上混合层高度与AQI呈现负相关关系,混合层高度较低抑制垂直对流,从而使污染物在低空区域性积聚,3次污染过程混合层高度最低值均小于100m.逆温层的出现利于霾污染过程中污染物的累积,近地层的贴地逆温将污染物集聚在地表,第1次过程贴地逆温强度高达8.2℃;脱地逆温导致污染物在边界层内堆积并抑制其扩散,均易导致高浓度污染发生,第2次过程脱地逆温为主,强度高达4.8℃.气溶胶类型多为沙尘、大陆型污染物、污染型沙尘及烟粒.污染发生通常受局地排放、区域输送及长距离输送的共同影响,气团携带的因人为产生的细粒子也是造成污染的主要原因之一.  相似文献   

18.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

19.
大气环境管理平台是目前我国城市大气环境管理的重要手段.利用气象、空气质量、污染源等多源异构数据资料,以模型集成分析的方法,针对沧州市的消峰和污染减排问题,开发了大气环境管理平台(APP),并对沧州市大气污染过程进行综合分析和验证.以沧州市2019年1月27-30日两次大气污染过程为例进行分析,结果表明:①污染过程1(2019年1月27日14:00-1月28日02:00)中ρ(PM2.5)/ρ(PM10)平均值为0.59,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为37.0 μg/m3、66.7 μg/m3和1.5 mg/m3;污染过程2(1月29日10:00-1月30日09:00)中ρ(PM2.5)/ρ(PM10)平均值为0.61,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为38.5 μg/m3、67.7 μg/m3和1.8 mg/m3,说明加强对前体物的控制是削弱重污染时段ρ(PM2.5)的重要途径.②污染过程1的相对湿度在重度污染时段增长显著,污染过程2中相对湿度有10 h在70%以上;同时,在此期间风速较小,近地面逆温层较厚,从而加速了颗粒物吸湿增长和二次转化,说明高湿、低风速等气象条件是形成重污染天气的主要原因之一.③源解析结果表明,外来源的平均贡献率为44.73%,本地源的平均贡献率为55.27%,本地工业源、民用源、交通源和电力源贡献率分别为42.20%、11.97%、1.00%和0.10%,说明重污染期间沧州市受到周边区域传输具有一定的可能性,本地源的贡献主要来自工业源和民用源.   相似文献   

20.
选取2017~2020南京地区冬季3个典型霾天气过程,综合分析了霾天气过程中污染物、气象要素以及边界层条件等影响机制与特征变化.结果表明,3次过程中,AQI指数峰值分别为304(严重污染)、227(重度污染)与176(中度污染),且与PM2.5、PM10浓度变化基本趋于一致,PM25与PM10比值基本都大于0.7;污染...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号