首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
为探究不同燃料类型锅炉羰基化合物排放特征,选取以煤、生物质、石油焦和天然气为燃料的14台工业锅炉和2台燃煤电站锅炉作为研究对象,采用气袋-PFPH衍生-GC/MS方法采集和分析烟气中的21种羰基化合物.结果表明,不同燃料类型锅炉烟气中羰基化合物呈现明显差异(One-way ANOVA,F=4.458,P=0.028<0.05),其中羰基化合物质量浓度(9%基准氧量)排序是石油焦 > 电站锅炉 > 煤 > 天然气 > 生物质,分别为(6306.25±1335.35),(5745.96±2864.62),(4784.85±1698.20),(3589.51±1534.676),(1341.18±616.46)μg/m3.不同燃料类型的锅炉烟气中羰基化合物组分特征有明显差异性,但甲醛、乙醛、丙酮和丙醛等低分子量的羰基化合物均占比较大,燃石油焦、燃煤电站、燃煤、燃天然气和燃生物质锅炉中低碳羰基化合物总占比分别达到87.56%,91.36%,92.94%,78.70%和45.84%.最后,采用最大增量反应活性(MIR)和OH消耗速率评价烟气中羰基化合物物种的化学反应活性,结果表明,甲醛、丙醛、乙醛等低碳羰基化合物为关键活性物种.  相似文献   

2.
生物质成型燃料锅炉挥发性有机物排放特征   总被引:1,自引:0,他引:1  
以5台燃成型生物质燃料锅炉为研究对象,基于预浓缩-GC-MS/FID的测量方法,对成型生物质燃烧产生的烟气进行了挥发性有机物(VOCs)排放特征研究,同时还测定颗粒物、NO_x、SO_2和汞及其化合物的排放浓度.结果表明,5台锅炉所排放的SO_2和汞及其化合物均低于排放标准要求,而氮氧化物和颗粒物的排放存在高于国标排放限值现象.56种VOCs总质量浓度在(872.43±293.80)~(6 929.66±1 137.25)μg·m~(-3)之间,影响因素分析表明VOCs浓度与炉膛中心温度及负荷有较强负相关性.VOCs的排放中烯烃占比最大,达41%~59%,其次是烷烃和芳香烃,分别为27%~49%和6%~18%.烯烃的排放以乙烯、1-丁烯、顺-2-丁烯和1-己烯为主,烷烃以正己烷、异戊烷和环戊烷为主,芳香烃则以苯和甲苯为主.臭氧生成潜势采用最大增量反应活性法进行分析,5台锅炉的臭氧生成潜势贡献主要来自于烯烃,高达76%~90%,而烷烃也可占6%~19%.  相似文献   

3.
采用排放因子法建立了2016年兰州市生物质燃烧源挥发性有机物(VOCs)排放清单,并分析了污染物的时空排放特征,利用排放清单对生物质燃烧源的臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势进行了估算,研究其排放对大气环境的影响.结果表明:2016年兰州市生物质燃烧源排放VOCs总量为6626.2t,排放高值区在榆中东南及东北部、永登中部和七里河南部,经济水平落后、秸秆产量大的地区污染物排放量更大.污染物排放集中在采暖季(11~3月)及农作物收割期(7~8月);兰州市生物质燃烧源的OFP总量为13880.3t,煨炕为OFP贡献最大的子源,占比46.1%,含氧挥发性有机物(OVOCs)为OFP贡献最大的关键组分,占比51.4%;OFP贡献排名前10的物种有乙酸、丙烯、2-丁酮、甲苯、甲醛、乙醛、间/对-二甲苯、1-丁烯、丙酸和异戊二烯.煨炕是SOA生成潜势贡献最大的子源,占比46.5%,芳香烃为SOA生成潜势贡献最大的关键组分,占比62.2%,SOA生成潜势贡献排名前10的物种有苯酚、甲苯、α-蒎烯、间/对-二甲苯、苯、邻二甲苯、茚、1,2,4-三甲基苯、乙苯和1,2,3-三甲基苯;以降低区域O3和SOA浓度为目标时,应优先管控煨炕和秸秆露天燃烧(玉米)两类子源.  相似文献   

4.
生物质锅炉与燃煤锅炉颗粒物排放特征比较   总被引:9,自引:0,他引:9  
选择2台设计结构不同的生物质锅炉(BB1、BB2),针对木质和秸秆2种生物质燃料开展烟尘、PM10和PM2.5排放特征的研究,并与燃煤锅炉进行比较. 结果表明:2台生物质锅炉的大气污染物排放质量浓度都未达到北京市DB 11/139—2007《锅炉大气污染物排放标准》的要求;2台生物质锅炉颗粒物的排放因子存在差别,燃烧木质成型燃料时,BB1和BB2生物质锅炉除尘器后的烟尘排放因子分别为207.10和465.51mg/kg,PM10排放因子分别为75.18和149.61mg/kg, PM2.5排放因子分别为58.48和106.86mg/kg;燃烧秸秆成型燃料时,BB1和BB2生物质锅炉除尘器后的烟尘排放因子分别为142.86和1200.86mg/kg,PM10排放因子分别为63.63和102.01mg/kg,PM2.5的排放因子分别为50.90和76.51mg/kg. 与热功率相近的燃煤锅炉比较,2台生物质锅炉除尘器前的PM10平均排放因子低30.41%,PM2.5平均排放因子却高36.84%,即PM2.5在生物质锅炉烟尘中所占比例更高. 尽管利用可再生能源的生物质锅炉具有很好的发展前景,但目前该类锅炉仍存在污染物排放不达标的现象,因此,需要提高热能利用效率和除尘效率,以减少污染.   相似文献   

5.
金丹 《环境科学》2022,43(1):132-139
为研究上海市夏季臭氧高发季节大气VOCs在臭氧生成中作用,选取2018年5~8月大气臭氧较高的时段,在淀山湖科学观测研究站对103种挥发性有机物、臭氧和氮氧化物等环境污染物进行观测.结果表明,上海臭氧高发季节大气平均φ(VOCs)为32.7×10-9,羰基化合物是VOCs的主要组分,所占质量分数达35.0%.羰基化合物中甲醛体积分数最高,其次是丙酮,占12种测量羰基化合物总量的82.8%. 5月环境空气的化学反应活性最强,总的臭氧生成潜势(OFP)为337.2μg·m-3,甲醛贡献率最大.烷烃、烯烃和芳香烃的日变化呈现夜高昼低规律,在早晨出现小峰值,与交通排放影响有关;而醛酮类日变化呈现昼高夜低规律,与光化学反应的二次生成过程有关.OBM模拟结果显示,5~6月属于臭氧生成的VOCs控制区,7~8月属于过渡区.  相似文献   

6.
为研究煤化工产业园区挥发性有机物(VOCs)污染特征及其对大气细颗粒物(PM2.5)和臭氧(O3)的贡献,本研究于2021年夏季利用气相色谱/质谱联用仪在某大型煤化工产业园区开展了环境空气115种VOCs的在线监测研究,分析了VOCs的浓度水平、组成特征、日变化特征、潜在来源及其对O3和PM2.5中二次有机气溶胶(SOA)的生成贡献. 结果表明:①观测期间,园区站点VOCs的平均体积分数为89.32×10?9±50.57×10?9,显著高于该园区所在城市的城区站点VOCs浓度水平. ②含氧VOCs (OVOCs)是该园区VOCs的主要特征污染物,占总VOCs体积分数的48.2%,乙醇、丙醛和甲醛是体积分数排名前三的物种. ③VOCs的臭氧生成潜势(OFP)为595.64 μg/m3,各组分对O3贡献潜势的大小表现为OVOCs>烯烃>芳香烃>烷烃>卤代烃>含硫VOC>炔烃. OFP排名前十的物种均为OVOCs、烯烃和芳香烃,其中丙醛对OFP的贡献占比最高,占总OFP的22.2%. ④间/对-二甲苯、邻二甲苯和乙苯等苯系物对二次有机气溶胶生成潜势(SOAFP)的贡献突出,其中间/对-二甲苯的SOAFP最大,占总SOAFP的29.6%,主导了SOA生成. 研究显示,煤化工产业园区中丙醛和甲醛等OVOCs、顺-2-丁烯等烯烃以及间/对-二甲苯与邻二甲苯等芳香烃对大气复合污染贡献较大,是开展PM2.5和O3污染协同控制重点关注的物种.   相似文献   

7.
定量输送过程对大气污染事件的贡献程度一直是目前区域大气污染防控的突出难点和重要需求.对此,基于WRF-Chem模式对佛山典型区域性臭氧(O3)污染事件开展模拟,应用四维通量法分别量化周边区域对佛山市臭氧及其前体物的输送通量,厘清臭氧直接输送和前体物输送的贡献,发现周边区域对佛山市输送的O3总通量平均值为120.3 t·h-1;挥发性有机化合物(VOCs)总通量平均值为30.2 t·h-1;其对应的臭氧生成潜势(OFP)为114.8 t·h-1.通过统计各O3污染事件的输送通量,发现污染期间输入佛山O3通量最大的城市为广州(贡献率为44%);输入VOCs通量最大的城市为肇庆(贡献率为48%).分析输送VOCs排放导致的O3生成潜势发现含氧挥发性有机物(OVOCs)对OFP的贡献最大,在“最大输入事件”中占比为47%.甲醛、二甲苯、醛类、丙酮和苯酚类等OVOCs和芳香烃是对OFP贡献前5的物种,贡献量占总OFP的50...  相似文献   

8.
江苏省人为源VOCs排放清单及其对臭氧生成贡献   总被引:1,自引:0,他引:1  
夏思佳  刘倩  赵秋月 《环境科学》2018,39(2):592-599
基于江苏省工业、能源、环境等活动水平数据,结合排放因子法和源成分谱研究成果,建立了江苏省分市、分行业、分物种人为源VOCs排放清单,利用最大增量反应活性(MIR)估算了其对臭氧的生成贡献.结果显示,江苏省2015年VOCs人为源排放量为192.78万t,化石燃料燃烧、工业过程源、有机溶剂使用源、生物质燃烧源、移动源、有机溶剂储运源排放质量分数分别为7.38%、27.93%、39.56%、3.55%、16.18%、5.39%.苏州、南京、徐州3市VOCs排放量居全省前三位,均超过20万t.56种臭氧前驱物所产生的臭氧生成潜势(OFP)总量为542.95万t,行业分布与VOCs排放总量的行业分布相似,机械设备制造、交通工具制造、建筑装饰等涂装行业对OFP的贡献比例是VOCs排放总量贡献比例的1.3~1.6倍,控制喷涂行业等量的VOCs会产生更大的OFP削减.对OFP贡献大的前10位物种分别是间/对-二甲苯、乙烯、丙烯、1,3-丁二烯、甲苯、邻-二甲苯、1-丁烯、乙苯、1,2,4-三甲基苯、对-乙基甲苯,对总OFP的贡献为75.63%.  相似文献   

9.
使用SUMMA罐采集华东地区5类典型合成树脂企业有组织排口样品,通过气相色质联用技术(GC-MS)定量分析106种VOCs,计算了合成树脂行业排放量、排放系数和不确定性,分析了VOCs的排放特征和臭氧生成潜势,建立了5类合成树脂VOCs排放成分谱.结果表明:合成树脂企业VOCs排放量为346~3467kg/a,5类合成树脂排放系数为0.06~1.24g/kg,其中涂料树脂(CR)类企业排放量和排放系数均最大.芳香烃、含氧烃(OVOCs)和卤代烃是合成树脂行业VOCs排放基本组分,累计占比范围是73.2%~98.3%.涂料树脂、酚醛树脂(PF)、聚氨酯(PU)、共聚物树脂(ABS)和聚碳酸酯(PC)特征污染物分别为:甲基异丁基酮、苯、甲苯、苯乙烯和二氯甲烷.合成树脂企业臭氧生成潜势(OFP)为22.7~202.5mg/m3,源反应性(SR)为0.3~4.6g/g,CR类企业OFP和SR均最大.合成树脂行业SR处于各行业平均水平.芳香烃、OVOCs和烯炔烃是合成树脂行业的主要光化学活性组分,累计OFP贡献率为64.1%~100.0%,苯、甲苯、甲基异丁基酮、乙烯、苯乙烯是合成树脂行业关键活性物种.研究显示,合成树脂行业VOCs治理应管控芳香烃和OVOCs的排放,重视污染物恶臭问题和卤代烃溶剂的危害,减排VOCs排放量大、臭氧生成能力强的CR类企业.  相似文献   

10.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

11.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

12.
Fifteen heavy-duty diesel vehicles were tested on chassis dynamometer by using typical heavy duty driving cycle and fuel economy cycle. The air from the exhaust was sampled by 2,4- dinitrophenyhydrazine cartridge and 23 carbonyl compounds were analyzed by high performance liquid chromatography. The average emission factor of carbonyls was 97.2 mg/km, higher than that of light-duty diesel vehicles and gasoline-powered vehicles. Formaldehyde, acetaldehyde, acetone and propionaidehyde were the species with the highest emission factors. Main influencing factors for carbonyl emissions were vehicle type, average speed and regulated emission standard, and the impact of vehicle loading was not evident in this study. National emission of carbonyls from diesel vehicles exhaust was calculated for China, 2011, based on both vehicle miles traveled and fuel consumption. Carbonyl emission of diesel vehicle was estimated to be 45.8 Gg, and was comparable to gasolinepowered vehicles (58.4 Gg). The emissions of formaldehyde, acetaldehyde and acetone were 12.6, 6.9, 3.8 Gg, respectively. The ozone formation potential of carbonyls from diesel vehicles exhaust was 537 mg O3/km, higher than 497 mg O3/km of none-methane hydrocarbons emitted from diesel vehicles.  相似文献   

13.
列车车厢内醛酮化合物的污染状况   总被引:5,自引:3,他引:2  
陆豪  朱利中 《环境科学》2005,26(2):74-77
建立了室内及公共场所空气中10种醛酮(甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、丁醛、苯甲醛、环己酮、戊醛)的采集、前处理及分析方法,采样效率为92%~100%,回收率为91%~104%,检测限为0.26 ng/m3~0.82 ng/m3.调查评价了6辆列车车厢空气中醛酮的污染状况.结果表明,列车车厢空气中醛酮的总浓度为0.1591 mg/m3~0.2828 mg/m3,平均浓度为0.2330 mg/m3,其中甲醛、乙醛、丙酮的平均浓度分别为0.0922 mg/m3、0.0499 mg/m3、0.0580 mg/m3,占总平均浓度的42.6%、21.4%、24.9%.初步确定列车车厢空气中的醛酮化合物来自木制品和抽烟的混合源.乘客的醛酮吸入量约为0.043 mg/h~0.076 mg/h.  相似文献   

14.
Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons, and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China. Mixing ratios of carbonyls and hydrocarbons showed large fluctuations during the entire measurement. The average level for total measured volatile organic compounds during the pollution episode from 25th to 27th November, 2011 was 91.6 ppb, about 7 times the value for the clean period of 7th–8th, November, 2011. To preliminarily identify toluene sources at this site, the emission ratio of toluene to benzene (T/B) during the pollution episode was determined based on photochemical ages derived from the relationship of alkyl nitrates to their parent alkanes. The calculated T/B was 5.8 ppb/ppb, significantly higher than the values of 0.2–1.7 ppb/ppb for vehicular exhaust and other combustion sources, indicating the dominant influence of industrial emissions on ambient toluene. The contributions of industrial sources to ambient carbonyls were then calculated using a multiple linear regression fit model that used toluene and alkyl nitrates as respective tracers for industrial emission and secondary production. During the pollution episode, 18.5%, 69.0%, and 52.9% of measured formaldehyde, acetaldehyde, and acetone were considered to be attributable to industrial emissions. The emission ratios relative to toluene for formaldehyde, acetaldehyde, and acetone were determined to be 0.10, 0.20 and 0.40 ppb/ppb, respectively. More research on industrial carbonyl emission characteristics is needed to understand carbonyl sources better.  相似文献   

15.
小型燃油锅炉大气污染物排放特征   总被引:5,自引:2,他引:3  
燃料燃烧是大气污染物的重要来源之一,对人体健康、空气质量和气候变化产生严重影响. 以85台小型燃油锅炉(≤10.5 MW)的颗粒物(PM),SO2和NOx排放实测数据为基础,通过统计分析方法,研究了大气污染物PM,SO2和NOx的排放特征及其影响因素,分析了我国小型燃油锅炉PM,SO2和NOx的排放现状. 结果表明,在未采取控制措施的条件下,ρ(PM)与燃油灰分〔w(灰分)〕和硫含量〔w(S)〕无关;而在过量空气系数(α)>1时,ρ(SO2)与燃油w(S)之间呈现显著的正线性相关性;ρ(NOx)与燃油氮含量〔w(N)〕不具有相关性,而随过量空气系数的增大而增大. 实测得到ρ(PM),ρ(SO2)和ρ(NOx)平均值分别为20.0,259.9和318.2 mg/m3;所有测试锅炉的ρ(PM)远远小于《锅炉大气污染物排放标准》(GB13271—2001)所规定的最高允许排放限值,有90%以上的锅炉达到ρ(SO2)最高允许排放限值,有84%的锅炉达到ρ(NOx)最高允许排放限值.   相似文献   

16.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号