首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Caroni River, a tributary of the Orinoco River in the State of Bolivar, Venezuela, has been subjected to mining since the end of the last century. Until the 1990s, hundreds of artisanal miners operated along a 70 km stretch of the river using rudimentary suction dredges to extract gold and diamonds from sediments. Although artisanal miners created considerable wealth along the river, the local community has also been negatively impacted by the social and environmental effects that characterize this sector. The flooding of many parts of the Lower Caroni River, in conjunction with the development of a large hydroelectric-power complex, changed the conditions for dredging operations.A Canada-based company is proposing to open the recently-created hydro-electrical lakes to a Mineral Dredging Project. The early forecasting of potential socioeconomic and environmental impacts would be a valuable tool to build a sustainable business case that facilitates the integration of the project into a sensitive environment. These strategies, currently used in other economic sectors, would contribute to the identification of opportunities to negotiate mutually beneficial agreements with stakeholders of the Project, and reduce the risk of conflict, in this particular case, with the hydroelectric company (EDELCA), former small-scale miners and other stakeholders.This paper, based on the pre-feasibility study of the Project, assesses the applicability of such tools to the mineral dredging and to junior mining company projects in general.  相似文献   

2.
Artisanal small-scale gold miners (ASM) occasionally employ whole ore amalgamation by adding mercury into ball mills to recover gold. In this process, 25–30% of the mercury added is lost to the environment. It is also inefficient less than 30% of gold is recovered. Amalgamation, followed by cyanidation, has been observed at many artisanal mining sites. This combination poses additional environmental and health consequences. Tests with ore samples from Talawaan, North Sulawesi, Indonesia indicate the possibility of replacing mercury by cyanidation in the ball mill, reaching gold extraction of 93% in 6 h of leaching. The gold in the Indonesian ore sample is fine and less than 8% of gold recovery was obtained with gravity concentration of the ore ground 80% below 0.25 mm, which is a reasonably fine grain size for artisanal gold operations. Replacing mercury addition with cyanidation in ball mills was implemented in one artisanal gold mining operation in Portovelo, Ecuador, achieving 95% of gold extraction in 8 h of mill leaching. This technique demonstrated a drastic improvement in gold recovery. It was found to be a simple, inexpensive technique well accepted by local miners. The results from laboratory and field tests are promising; however a thorough investigation into the socio-economic and environmental aspects of this presented alternative must be conducted prior to introduction.  相似文献   

3.
Agricultural development to meet rapidly growing demands for food and biofuel and the abandonment of traditional land use have had major impacts on biodiversity. Habitat diversity is one of the most important factors influencing biodiversity in agricultural landscapes. In this study we propose an ecological index of ecosystem or habitat diversity in agricultural landscapes – the Satoyama Index (SI) – that is discernible under appropriate spatial units (e.g., 6 km × 6 km) from 1 km × 1 km gridded land-cover data available from an open-access web site. A high SI value is an indicator of high habitat diversity, which is characteristic of traditional agricultural systems, including Japanese satoyama landscapes, while a low value indicates a monotonic habitat condition typical of extensive monoculture landscapes. The index correlated well with the spatial patterns of occurrence of a bird of prey (Butastur indicus) and species richness of amphibians and damselflies in Japan. The values of the SI also corresponded well to the spatial patterns of typical traditional agricultural landscapes with high conservation value in other countries, for example, the dehesas of the Iberian Peninsula and shade coffee landscapes in Central America. Globally, the pattern of East/South-East Asian paddy belts with their high index values contrasts markedly with the low values of the Eurasian, American, and Australian wheat or corn belts. The SI, which correlates landscapes with biodiversity through potential habitat availability, is highly promising for assessing and monitoring the status of biodiversity irrespective of scale.  相似文献   

4.
In the present work, metal-cored arc welding process was used for joining of modified 9Cr-1Mo (P91) steel. Metal-cored arc welding process is characterized by high productivity, slag-free process, defect-free weldments that can be produced with ease, and good weldability. Toughness is essential in welds of P91 steel during hydro-testing of vessels. There is a minimum required toughness of 47 J for welds that has to be met as per the EN1557:1997 specification. In the present study, welds were completed using two kinds of shielding gases, each composition being 80% Argon + 20% CO2, and pure argon respectively. Microstructural characterization and toughness evaluation of welds were done in the as – weld, PWHT at 760 °C – 2 h and PWHT at 760 °C – 5 h conditions. The pure argon shielded welds (‘A2’ and ‘B2’) have higher toughness than 80% argon + 20% CO2 shielded welds (‘A1’ and ‘B1’). Pure argon shielded welds show less microinclusion content with low volume fraction of δ-ferrite (<2%) phase. Themo-calc windows (TCW) was used for the prediction of equilibrium critical transformation points for the composition of the welds studied. With increase in post-weld heat treatment (PWHT) duration from 2 h to 5 h, there was increase in toughness of welds above 47 J. Using metal-cored arc welding process, it was possible to achieve the required toughness of more than 47 J after PWHT at 760 °C – 2 h in P91 steel welds.  相似文献   

5.
The aim of this paper is to examine the environmental consequences of beef meat production in the EU, using a life cycle approach. Four beef production systems were studied – three from intensively reared dairy calves and one from suckler herds. According to the results of the analysis, the contributions from the production of 1 kg beef meat (slaughter weight) to global warming, acidification, eutrophication, land use and non-renewable energy use were lower for beef from dairy calves than from suckler herds (16.0–19.9 versus 27.3 kg CO2e, 101–173 versus 210 g SO2e, 622–1140 versus 1651 g NO3e, 16.5–22.7 versus 42.9 m2year, and 41.3–48.2 versus 59.2 MJ, respectively). The breakdown analysis helped identify the key areas in the “cradle to farm gate” beef production system where sustainable management strategies are needed to improve environmental performance. The study also included a sensitivity analysis to preliminarily estimate GHG emissions from beef production systems if land opportunity cost and land use change related to grazing and feed crop production for beef were taken into account. If so, the contribution from the production of 1 kg beef to global warming would increase by a factor of 3.1–3.9, based on a depreciation period of 20 years. This highlights the importance of taking into account the impacts of land use in assessing the environmental impacts of livestock production.  相似文献   

6.
For addressing climate change, public support for changes in policy is needed, as well changes in individual lifestyles. Both of these appear to be intimately related with people’s worldviews. Understanding these worldviews is therefore essential. In order to research and ‘map’ them, we translated the theoretical ‘Integrative Worldview Framework’ (IWF) into an empirical, quantitative approach. We constructed a worldview-scale aiming to distinguish between four major worldviews – labeled traditional, modern, postmodern, and integrative – and explored their interface with opinions and behaviors with respect to climate change. The survey was conducted with representative samples of citizens in the Netherlands and the USA (n = 527 and n = 556). The hypothesized worldviews were found in the data with a reasonable degree of reliability, especially in the Dutch sample. We also found consistent relationships between these worldview-clusters and a range of opinions, political priorities, and behaviors. In both countries postmoderns and integratives displayed significantly more concern about climate change as well as more sustainable behaviors, compared with moderns and traditionals. The implications of these findings for environmental policy and social science are noteworthy.  相似文献   

7.
Modified 9Cr-1Mo (P91) steel is widely used in the construction of power plant components. In the present study, a comparative study on influence of activated flux tungsten inert gas (A-TIG), and gas tungsten arc (GTA) welding processes on the microstructure and the impact toughness of P91 steel welds was carried out. P91 steel welds require a minimum of 47 J during the hydrotesting of vessels as per the EN1557: 1997 specification. Toughness of P91 steel welds was found to be low in the as-weld condition. Hence post-weld heat treatment (PWHT) was carried out on weld with the objective of improving the toughness of weldments. Initially as per industrial practice, PWHT at 760 °C – 2 h was carried out in order to improve the toughness of welds. It has been found that after PWHT at 760 °C – 2 h, GTA weld (132 J) has higher toughness than the required toughness (47 J) as compared with A-TIG weld (20 J). The GTA weld has higher toughness due to enhanced tempering effects due to multipass welding, few microinclusion content and absence of δ-ferrite. The A-TIG weld requires prolonged PWHT (i.e. more than 2 h at 760 °C) than GTA weld to meet the required toughness of 47 J. This is due to harder martensite, few welding passes that introduces less tempering effects, presence of δ-ferrite (0.5%), and more alloy content. After PWHT at 760 °C – 3 h, the toughness of A-TIG weld was improved and higher than the required toughness of 47 J.  相似文献   

8.
In many countries, such as Brazil, Colombia, Ecuador, Indonesia, Venezuela and Zimbabwe, amalgamated tailings are leached with cyanide to recover remaining gold. This paper describes a recently completed study conducted at seven gold processing centers in Portovelo-Zaruma, Southern Ecuador, which involved consultation with local miners. The objective of the study was to understand the behaviour of mercury (with a focus on mercury loss) in artisanal gold mining operations through the evaluation of two cyanidation processes (Merrill-Crowe and Carbon-in-pulp), using a participatory approach. In order to assess the kinetics of mercury dissolution in cyanide, a bottle roll test was conducted in the laboratory. In the Merrill-Crowe cyanidation process, an average of 24.2% of metallic mercury was determined to be trapped at the bottom of the agitation tanks; 33.1% of mercury is lost in association with solid material and 11.7% is lost in solution. Approximately 31.0% of mercury in solution is sent to the zinc precipitation cells from which 27.8% is precipitated on the zinc shavings, with 3.23% remaining in solution. The mercury precipitated on to the zinc is lost to the atmosphere when the shavings are burned at 900 °C. In the Carbon-in-pulp (CIP) leaching system, 11.2% of the mercury is lost with the solid tailings; 31.6% of the mercury is associated with fine particles in suspension and 50.8% is likely dissolved. About 2.68% is trapped at the bottom of the tank and 3.72% is absorbed by the activated carbon. The bottle roll test revealed that mercury dissolution is directly proportional to cyanide concentration. At 10 g/ton of cyanide, approximately 42% of mercury was leached, whereas all gold was solubilized. During this study, miners recognized the risk associated with the cyanidation of mercury-rich tailings, and were aware of how much mercury is discharged to local streams and to the atmosphere. The active participation of miners in this study has led to the strengthening of their knowledge and awareness of mercury contamination, and has enhanced their understanding of the nature of the problem, as well as the weaknesses and strengths of the system they operate.  相似文献   

9.
Artisanal and small-scale mining (ASM) provides an important source of livelihood for rural communities throughout the world. These activities are frequently accompanied by extensive environmental degradation and deplorable socio-economic conditions, both during operations and well after mining activities have ceased. As gold is easily sold and not influenced by the instability of local governments, it is the main mineral extracted by artisanal miners. Mercury (Hg) amalgamation is the preferred gold recovery method employed by artisanal gold miners and its misuse can result in serious health hazards for miners involved in gold extraction, as well as for surrounding community inhabitants, who may be exposed to mercury via the food chain. The rudimentary techniques characteristic of ASM result in a number of occupational hazards, other although most risks are primarily attributed to machinery accidents and ground failure, such as landslides and shaft collapses.Several technologies and methods commonly utilized by large-scale mining operations can be downsized to smaller scale operations. However, the likelihood that miners will adopt these large-scale methods, or those developed specifically for ASM, depends upon some key factors. For an artisanal miner, these factors include: (1) increased or comparable simplicity, (2) quick recovery of the economic mineral, and (3) demonstrated financial gain. Other practical aspects, such as the availability of materials (chemicals, steel rods, piping, generators, etc), capital and operating cost requirements and access to technical support, also influence acceptance of new techniques.This article will review four inter-related areas: first, the limitations and benefits, for ASM, of a number of specific technologies; second, the role of Processing Centers in education, information dissemination and provision of “clean” services; third, benefits and challenges associated with formalization of ASM activities; and fourth, the contribution of ASM to the development of sustainability of communities, primarily through diversification of livelihoods. The appropriate application of technologies, particularly given the diversity of ASM communities around the world, will also be explored.  相似文献   

10.
The concerns over climate change negotiation, decision texts and links to domestic policy interests of countries to keep warming within an acceptable limit have become the ‘hotspot issues’ of the United Nations Framework Convention on Climate Change (UNFCCC). Hotspot issues are the human – political economy factors which have evolved over time from negotiation texts or phrases, principles or behaviors with tendencies to influence climate negotiations yet cannot be identified with the scientific literature. Whilst big emitters have been accused as having hegemony over the negotiations, the effects of disunity amongst the parties over domestic policy interests have been overlooked. Hence the article examines the emergence of hotspot issues and how they manifest within the international climate policy regime. The Intended Nationally Determined Contributions (INDCs) of 130 countries submitted before the Paris agreement, were analyzed using the following texts: Adaptation, Mitigation, Co-benefits, Finance, Land use, Food security, Poverty, Resilience, Green growth, Green economy, Sustainable development, Biodiversity, Ecosystem services and Conservation. Of these, ‘adaptation’ was cited 2780 times, 1956 for ‘mitigation’ and 32 for ‘ecosystem services’ in the nature conservation category. Ten phases of the climate policy regime and historical hotspot issues were identified for the period 1980–2030. ‘Adaptation’ and mitigation appeared more frequently in the INDCs and correlated with each other (r = 0.56), as the two correlated further with ‘land use’ (0.50 < r < 0.60), and similarly with sustainable development (0.40 < r < 0.70) where ‘r’ is the Pearson Rank Correlation. Therefore the success of the ‘ambitious targets’ for mitigation will depend on similar ambitious goals for adaptation, land use and sustainable development. Several differences existed in the correlation of the hotspot issues within the regional geographical blocs (Africa, Asia, Europe, North America, Oceania, South America) and split along the hotspot issues yet Europe mostly oriented towards mitigation and land use, and Oceania on resilience building. These differences provide favorable conditions for increased cooperation and true multilateralism if they are properly diagnosed.  相似文献   

11.
The gold ore mined by artisanal and small-scale miners in Portovelo-Zaruma, Ecuador, is processed in custom mills. Miners can choose between Chilean-mill processing centers, where the ore is ground, concentrated and amalgamated, or “Chancha” Centers, where the whole ore is amalgamated. By weighing mercury before and after all unit operations involved in the amalgamation process, it was possible to determine mercury losses. Analyses in eight centers indicated that 51–59% of mercury introduced into the amalgamation process is recovered when miners squeeze the excess mercury. Around 29% of total mercury is lost when miners burn amalgam and gold is melted, and 15% is lost with the tailings. When only gravity concentrates are amalgamated, 1.4% of mercury entering the process is lost with tailings, whereas 29.5% is lost when the whole ore is amalgamated. Approximately 1.5 tonnes/annum of mercury is released in Portovelo-Zaruma, from which 70% is evaporated and 30% is released with tailings. Mercury-contaminated tailings are leached with cyanide in agitated tanks. A large majority of the processing centers dispose the final tailings with mercury and cyanide into the Calera River and Amarillo River. Mercury dissolved with cyanide likely becomes more bioavailable than metallic mercury. A campaign for reducing mercury emissions must focus on the use of individual retorts – mercury pollution control devices – and the elimination of whole ore amalgamation.  相似文献   

12.
As part of the Paris climate agreement, countries have submitted (Intended) Nationally Determined Contributions (NDCs), which includes greenhouse gas reduction proposals beyond 2020. In this paper, we apply the IMAGE integrated assessment model to estimate the annual abatement costs of achieving the NDC reduction targets, and the additional costs if countries would take targets in line with keeping global warming well below 2 °C and “pursue efforts” towards 1.5 °C. We have found that abatement costs are very sensitive to socio-economic assumptions: under Shared Socioeconomic Pathway 3 (SSP3) assumptions of slow economic growth, rapidly growing population, and high inequality, global abatement costs of achieving the unconditional NDCs are estimated at USD135 billion by 2030, which is more than twice the level as under the more sustainable socio-economic assumptions of SSP1. Furthermore, we project that the additional costs of full implementation of the conditional NDCs are substantial, ranging from 40 to 55 billion USD, depending on socio-economic assumptions. Of the ten major emitting economies, Brazil, Canada and the USA are projected to have the highest cots as share of GDP to implement the conditional NDCs, while the costs for Japan, China, Russia, and India are relatively low. Allowing for emission trading could decrease global costs substantially, by more than half for the unconditional NDCs and almost by half for the conditional NDCs. Finally, the required effort in terms of abatement costs of achieving 2030 emission levels consistent with 2 °C pathways would be at least three times higher than the costs of achieving the conditional NDCs – even though reductions need to be twice as much. For 1.5 °C, the costs would be 5–6 times as high.  相似文献   

13.
No mandatory national program currently exists to mitigate climate change in the US Consequently, voluntary programs and mandatory state-level programs are multiplying to allow users to register emission-offset activities, creating multiple often contradictory measurement and recording standards.For the land use sector we examined a hypothetical project: tree planting on rangelands in California. We apply four sets of protocols from the following registries – the California Climate Action Registry, the Chicago Climate Exchange (CCX), the Regional Greenhouse Gas Initiative and the USDOE 1605(b) program – and compare the results to the ‘actual’ net sequestration and also briefly compare them to international protocols such as the relevant Clean Development Mechanism methodology. Carbon in land use can be estimated accurately, precisely and cost-effectively, but to achieve this requires good protocols. As predicted, the consequence of applying different protocols for reportable carbon was significant. The choice of measurement pools, the handling of the baseline and the issue of uncertainty led to a baseline estimate of 0–66,690 t CO2-e, and final sequestered carbon totals (after 60 years) that varied between 118,044 and 312,685 t CO2-e—a factor of 2.5 difference. The amount reported under 1605(b) is the closest to “actual” with CCX entity reporting the most divergent.  相似文献   

14.
The application of controlled, low-frequency modulation (~100 Hz) superimposed onto the cutting process in the feed-direction – modulation-assisted machining (MAM) – is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining compacted graphite iron (CGI) at high machining speeds (>500 m/min). The tool life is at least 20 times greater than in conventional machining. This significant reduction in wear is a consequence of the multiple effects realized by MAM, including periodic disruption of the tool–workpiece contact, formation of discrete chips, enhanced fluid action and lower cutting temperatures. The propensity for thermochemical wear of CBN, the principal wear mode at high speeds in CGI machining, is thus reduced. The tool wear in MAM is also found to be smaller at the higher cutting speeds (730 m/min) tested. The feed-direction MAM appears feasible for implementation in industrial machining applications involving high speeds.  相似文献   

15.
Developing countries situated mostly in latitudes that are projected for the highest climate change impact in the twenty-first century will also have a predictable increase in demand on energy sources. India presents us with a unique opportunity to study this phenomenon in a large developing country. This study finds that climate adaptation policies of India should consider the significance of air conditioners (A/Cs) in mitigation of human vulnerability due to unpredictable weather events such as heat waves. However, the energy demand due to air conditioning usage alone will be in the range of an extra ~750,000 GWh to ~1,350,000 GWh with a 3.7 °C increase in surface temperatures under different population scenarios and increasing incomes by the year 2100. We project that residential A/C usage by 2100 will result in CO2 emissions of 592 Tg to 1064 Tg. This is significant given that India's total contribution to global CO2 emissions in 2009 was measured at 1670 Tg and country's residential and commercial electricity consumption in 2007 was estimated at 145,000 GWh.  相似文献   

16.
Artisanal small-scale mining (ASM) is responsible for over 90% of gold production in Mozambique. In 2005, a 15-day pilot training project was held in the village of Munhena, a gold mining community. This intervention aimed at raising awareness related to the environmental and health impacts of mercury amalgamation and introduced alternative practices to reduce mercury release and exposure. In 2007, a 9-day evaluation of the pilot campaign was accomplished and knowledge in regards to mining methods, and the ASM government–community operating relations in Munhena were updated. Miners in Munhena are organized in an association of over 3000 members, work on a 25 year Government granted 143 ha concession and generate a substantial income (producing over 5 kg of gold per month). There remain, however, serious barriers towards sustainable community development. ASM associated environmental and health costs are high, as mercury continues to be used and lost to the environment, and cyanide will be introduced soon. The Government of Mozambique has laid the foundation for supporting this sector; however, resources are limited, and thus restrict ability to fully address these issues. Importantly, malaria and HIV/AIDS are not diagnosed and/or treated effectively within the community, and basic necessities are absent. This paper concludes with recommendations focused on enhancing the ASM sector in Mozambique, and overcoming barriers to sustainability in the community of Munhena.  相似文献   

17.
There is continuing activity among regulatory bodies to assess and prioritize chemicals used in commerce based on their potential to be persistent, bioaccumulative, and toxic (PBT). Reliable data needed to perform a PBT hazard or risk assessment, however, may not always be readily available. Consequently concern may arise regarding the potential for false positives and false negatives to be wrongly classified. In order to more effectively classify substances, adequate time is needed to acquire the necessary data to support the overall PBT assessment. Of particular interest is the question of whether or not restrictions on the use and manufacture of a substance can be delayed to allow time to conduct the necessary field and laboratory studies of a particular substance? To address this question it is demonstrated that chemical partitioning property and environmental persistence information can be effectively combined to provide guidance for regulatory priority setting. Specifically, it is argued that substances that have media specific half-life values that exceed the regulatory threshold value for persistence under the EU chemicals REACH program, for example, are more likely to have a ‘legacy’ associated with their use when the log KOA > 8, and when they are emitted to air or soil. Thus, precautionary actions limiting the use and manufacture of the substance may be warranted. Whereas substances emitted to air with log KOA < 6 and log KAW > ?2 are less likely to have a ‘legacy’ associated with their use. Thus precautionary actions in the absence of data may not be warranted.  相似文献   

18.
Organic farming methods are claimed to be more environmentally friendly than conventional methods and the EU MIDAIR project had an overall aim to compare emissions from organic dairy farming with conventional methods of milk production. Manure stores are the second largest source of methane emissions (after enteric fermentation) on European dairy farming.The aim of this project was to measure green house gas (GHG) emissions from manures in covered and uncovered slurry stores and farm yard manure (FYM) heaps. The chosen method for measuring these emissions was the tracer ratio method, using sulphur hexafluoride (SF6) as the tracer gas, the limitations of this method prevented successful measurements being made on some of the stores and a modified method was used on the covered stores. The difference in concentration of the upwind and downwind samples and interfering sources were limiting factors. FYM emission measurements were successful only when the manure was stored indoors.Methane emissions were successfully measured over a 12 month period from the uncovered slurry stores. Emission rates from the uncovered slurry stores on the conventional farm and the organic farm ranged from 14.4 to 49.6 and from 12.4 to 42.3 g C m−3 d−1, respectively, with the mean CH4 emission rates of 35 and 26 g C m−3 d−1. On both farms, nitrous oxide emissions were close to zero.Methane emissions measured from the indoor organic FYM in summer were 17.1 g C m−3 d−1 and the nitrous oxide emission was 411 mg N m−3 d−1.The covered slurry stores were in such close proximity to other GHG sources that the tracer ratio method was unsuitable and the air-injection method was adopted. The measured emissions from covered slurry stores of CH4, CO2 and NH3 were, respectively, 14.9 g C m−3 d−1, 12.9 g C m−3 d−1 and 18.6 mg NH3 m−2 d−1 of slurry in February and 12.0 g C m−3 d−1, 9.5 g C m−3 d−1 and 335 mg NH3 m−2 d−1 slurry in March. No nitrous oxide production could be measured.  相似文献   

19.
The greenhouse gas emissions from agricultural systems contribute significantly to the national budgets for most countries in Europe. Measurement techniques that can identify and quantify emissions are essential in order to improve the selection process of emission reduction options and to enable quantification of the effect of such options. Fast box emission measurements and mobile plume measurements were used to evaluate greenhouse gas emissions from farm sites. The box measurement technique was used to evaluate emissions from farmyard manure and several other potential source areas within the farm. Significant (up to 250 g CH4 m−2 day−1and 0.4 g N2O m−2 day−1) emissions from ditches close to stables on the farm site were found.Plume emission measurements from individual manure storages were performed at three sites. For a manure storage with 1200 m3 dairy slurry in Wageningen emission factors of 11 ± 5 g CH4 m−3 manure day−1 and 14 ± 8 mg N2O m−3 manure day−1 were obtained in February 2002.Mobile plume measurements were carried out during 4 days at distances between 30 and 300 m downwind of 20 different farms. Total farm emissions levels ranged from 14 to 95 kg CH4 day−1 for these sites. Expressed as emission per animal the levels were 0.7 ± 0.4 kg CH4 animal−1 day−1 for conventional farms. For three farms that used straw bedding for the animals1.4 ± 0.2 kg CH4 animal−1 day−1 was obtained. These factors include both respired methane and emission from manure in the stable and the outside storages.For a subset of these farms the CH4 emission was compared with monthly averaged model emission calculations using FarmGHG. This model calculates imports, exports and flows of all products through the internal chains on the farm using daily time steps. The fit of modelled versus measured data has a slope of 0.97 but r2 = 0.27. Measurements and model emission estimates agree well on average, for large farms within 30%. For small farms the differences can be up to a factor of 3. CH4 emissions during winter seem to be underestimated.  相似文献   

20.
The lower tidal stretch of the river Ganges, known as Hugli (ca. 280 km), flows southward before entering the Bay of Bengal forming a vast mangrove-enriched estuarine delta called Sunderbans. Hugli estuary is a typical example of tide-dominated sink for contaminants from multifarious sources. This major important river is subjected to anthropogenic stress due to the socio-economic importance of these areas based on growth of industry, agriculture, aquaculture, port activities, fishing and tourism. The living resources have been degraded recently due to increases in population pressure, pollution and natural resource consumption to the extent of overexploitation. The present paper critically examines the physicochemical characteristics and level of dissolved heavy metals at three ecologically distinct zones along the course of the river – Babughat located in the eastern part of the metropolitan megacity Calcutta (140 km upstream from seaface), Diamond Harbor (70 km upstream from sea face) and Gangasagar positioned at the mouth of the Ganges estuary.Physicochemical characteristics of this partially mixed estuary are largely influenced by the interaction of seawater and discharge of riverine freshwater, annual precipitation and surface runoff. The levels of salinity, total dissolved solids, hardness and conductivity showed an increasing downward trend. Marked increase in biochemical oxygen demand (BOD) values (2.20–5.95 mg/l) was recorded in Babughat whereas correspondingly low values (0.75–2.82 mg/l) were noticed at Gangasagar. This can be attributed mainly due to huge organic load of untreated sewage from the twin city Howrah and Calcutta situated in the east and west of the river. Spatiotemporal distribution of heavy metals reveals a wide range of variations reflecting input of huge anthropogenic inputs associated with a number of physical and chemical processes. Levels of metals registered a seasonal pattern, with an increase during late monsoon months (September–October), a period characterized by low salinity and relatively low pH of the water. Elevated levels of dissolved Hg and Pb were also recorded in Babughat, with values ranging from 0.16 to 0.95 μg/ml and 0.017 to 0.076 μg/ml, respectively, this high values for Hg can be attributed to the discharge from pulp and paper manufacturing units and to atmospheric input and runoff of automobile emission for Pb.It was revealed that the socio-economic development of Calcutta, the most potential economic zone in India situated on the east bank of Hugli river, has had a significant impact on the water quality of this major river. The deterioration of water quality is directly related to nonfunctioning and malfunctioning of wastewater treatment plants and lack of environmental planning and coordination. To restore the ecological stability and economic vitality of this river, the following measures have been suggested: (i) strong vigilance programme is to be undertaken towards installation and maintenance of the wastewater treatment plants to check the flow of persistent contaminants in the river water and (ii) execution of legislation and mass awareness programmes are to be enacted to restore the sound health of the river. The authors urge that environmental education should be used as an effective tool for water resource management dealing with intricate and complex problems in the interaction between nature, technology and human beings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号