首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
对东南沿海平原地区某燃煤电厂不同方位距离的9个采样点进行为期9个月的大气颗粒物采集,以PM2.5、PM10为对象,研究了颗粒物与颗粒物汞的时空分布,探讨了燃煤电厂排放对周边大气颗粒物与颗粒物汞分布的影响.结果表明:①本研究区PM2.5平均浓度为78.10 μg·m-3,其中颗粒物汞平均浓度为294.88 pg·m-3;PM10平均浓度为114.48 μg·m-3,其中颗粒物汞平均浓度为363.41 pg·m-3,均高于海内外众多城市.②冬季颗粒物、碳组分及颗粒物汞的浓度远高于春、夏、秋三季,冬季燃煤量大、逆温等气象因素及远距离污染物传输均造成当地冬季颗粒物累积.③大气颗粒物汞浓度随距电厂距离的增加先增加后降低,最大浓度范围为电厂W-NW方向1.3~2.5 km处.④各采样点均受到多种污染源共同影响,以燃煤尘为主,餐饮油烟、机动车尾气、生物质燃烧和扬尘次之,燃煤电厂对周边区域环境大气可吸入颗粒物主要影响区域为W-NW方向1.3~2.5 km.  相似文献   

2.
硝基多环芳烃是大气细颗粒物中具有致癌效应的一类重要污染物,为探明硝基多环芳烃污染特征与来源,采集南京市14个大气细颗粒样品,利用气相色谱-质谱联用仪(GC-MS)测定硝基多环芳烃浓度,进行分布特征分析,来源识别和健康风险评估.结果表明,南京市大气细颗粒物中2,8-二硝基二苯并噻吩(743 pg·m-3)、2,7-二硝基芴(331 pg·m-3)、9-硝基蒽(326 pg·m-3)、3-硝基荧蒽(217 pg·m-3)和1,8-二硝基芘(193 pg·m-3)为主要的硝基多环芳烃;硝基多环芳烃检出浓度具有明显的季节变化,冬季最高(3082 pg·m-3),秋季其次(1553 pg·m-3),春季最低(1218 pg·m-3).南京市大气细颗粒物中硝基多环芳烃主要来自多环芳烃大气光氧化反应与生物质燃烧,二次生成是硝基多环芳烃的重要来源.当前南京PM2.5中硝基多环芳烃的致癌风险可控,二硝基多环芳烃是致癌风险的主要来源.  相似文献   

3.
2016年12月-2017年1月,在南京市4类典型功能区(农业区、住宅区、交通干道区、工业区)各选两点,共采集了大气PM2.5样品32套,测定并分析了其质量浓度、9种水溶性离子(WSIs)、有机碳(OC)以及元素碳(EC)的含量.观测期间,南京市冬季PM2.5的平均浓度为104.5 μg·m-3,分布特征为:工业区(116.6 μg·m-3)>农业区(104.3 μg·m-3)>住宅区(100.1 μg·m-3)>交通干道区(96.9 μg·m-3);WSIs、OC和EC的平均浓度(/PM2.5)分别为:53.4 μg·m-3(51.1%)、11.8 μg·m-3(11.3%)、8.2 μg·m-3(7.8%).农业区和住宅区受WSIs污染较严重且NOR、SOR较高,而工业区和交通干道区的OC、EC污染较严重且SOC/OC较高.进一步运用PMF模型解析,南京市冬季PM2.5来源为:二次源(37.3%)、工业源(31.2%)、交通源(16.4%)、建筑尘(7.9%)和燃煤源(7.2%).最后,本文收集了自2000年起南京市冬季大气PM2.5浓度及其污染来源研究,总体而言,近年来南京冬季大气PM2.5浓度呈下降趋势,其主要污染源比重也发生了较大变化,燃煤贡献有所下降,而工业和交通排放逐渐上升,且二次污染贡献逐渐突出.今后,控制二次污染源将成为南京市大气PM2.5治理的重中之重.  相似文献   

4.
成都市大气细颗粒物组成和污染特征分析(2012-2013年)   总被引:18,自引:4,他引:14       下载免费PDF全文
陈源  谢绍东  罗彬 《环境科学学报》2016,36(3):1021-1031
为了解成都市大气细颗粒物的污染特征,于2012年5月-2013年5月在成都市城区开展了每6 d采集1次样品的长期颗粒物观测.利用十万分之一分析天平、热光碳分析仪、离子色谱、电感耦合等离子体质谱(ICP-MS)分别分析了颗粒物样品的质量浓度、有机碳/元素碳、水溶性离子、无机元素等,同步收集了污染物在线观测数据、气象数据和卫星遥感数据.结果表明,采样期间,成都市可吸入颗粒物(PM10)和细粒子(PM2.5)浓度颗粒物浓度分别高达(129.7±76.4)和(91.6±54.3) μg·m-3,PM2.5中以二次无机离子(SNA,43.6%)和有机物(OM,31.2%)污染最为突出,其次为土壤组分(Soil,13.8%)、元素碳(EC,5.0%)和微量元素(Trace,0.8%);1月、3月、5月和10月是污染较重的月份.通过比较揭示了不同污染源影响下的典型污染特征.生物质燃烧期间,成都城区PM2.5浓度达214.3 μg·m-3,PM2.5/PM10比达0.89,其中OM贡献增加至57.2%,K+浓度达8.7 μg·m-3,OC/EC比达8.3,SNA比重下降;而沙尘传输期间,PM2.5浓度为122.6 μg·m-3,仅占PM10浓度的0.28,PM2.5中土壤组分比例剧增至77.3%,SNA和无机元素的比重明显下降;静稳天气下PM2.5浓度为261.0 μg·m-3,各组分比重并无明显变化,硝酸盐和铵盐比例稍有增加.  相似文献   

5.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

6.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

7.
随着城市化和工业化水平的逐渐提高,河南省的空气污染问题也日益严重.利用嵌套网格空气质量模式(NAQPMS),数值模拟了2013年7月-2014年6月年河南省大气细颗粒物及其前体物(NO2、SO2、PM10、PM2.5)的地面浓度,并量化了其主要来源.结果表明:模式能够较好地再现污染物的时空演化特征.整体来讲,河南省PM2.5的高值区集中在中部和北部地区,呈现冬季高、夏季低的特点.在线源解析模拟发现,河南省不同地区PM2.5的来源有所不同,中西部地区主要来自于本地,而在东部和北部地市,来自周边省份的区域输送更为显著,其贡献达到40%~50%,且在PM2.5浓度的高值区更为明显.就行业贡献而言,居民源、工业源和机动车排放是河南省PM2.5浓度的主要来源,其浓度贡献分别为23.7 μg·m-3(贡献比例24%,下同)、20.6 μg·m-3(21%)和21.3 μg·m-3(22%),电厂、农牧业和地面扬尘的浓度贡献分别为7.0 μg·m-3(7%)、8.7 μg·m-3(9%)和17.8 μg·m-3(18%).受居民源影响最大的地区是河南中东部和北部地市,其贡献达到PM2.5浓度的27%、27%和25%.工业源影响最大的地区集中在太行山南部地市,其浓度贡献为26.4 μg·m-3(24%),在其他地市的贡献为17%~23%.机动车对河南东部影响最为显著,其浓度贡献为22.9 μg·m-3(24%).电厂和农畜牧业对全省PM2.5的贡献分布比较均匀,分别为6%~9%和8%~10%.分析不同浓度下的PM2.5来源,发现工业源和扬尘贡献随PM2.5浓度增加逐渐降低,而居民源和机动车排放的贡献则有所增加,在PM2.5浓度高于100 μg·m-3期间,达到22%和20%.  相似文献   

8.
上海市PM2.5重金属污染水平与健康风险评价   总被引:15,自引:4,他引:11  
为了解上海市大气环境中PM2.5及其重金属的污染特征和健康风险,于2012年5~10月对上海市普陀区(PT)、闵行区(MH)和崇明岛(CM)大气颗粒物PM2.5及其重金属(Cd、Cr、Cu、Pb、Zn)含量进行了监测.结果显示,PM2.5质量浓度介于13.66~143.52 μg·m-3之间,其中,普陀和闵行大气中PM2.5的含量高于崇明岛,且于5月、9月和10月超出国家空气质量二级标准(24 h均值75 μg·m-3).3个监测点PM2.5中重金属含量的时间分布规律与PM2.5一致;崇明岛PM2.5中Cd、Cu、Pb、Zn的含量整体上低于普陀和闵行,而Cr的含量则较高.5种重金属元素对成年男性的健康风险最大,其次是成年女性,对儿童青少年的健康风险则最小;其中,Cd和Cr的风险指数要高于Cu、Pb、Zn的风险指数.  相似文献   

9.
以北京市大兴区南海子公园植被区与亦庄非植被区为研究对象,对比分析了植被区与非植被区PM10质量浓度日变化、月变化特征及典型天气条件下的变化.结果表明:PM10浓度的日变化趋势基本相同,呈典型的双峰曲线,春、夏季的峰值出现在9:00-10:00和18:00-19:00,秋、冬季的峰值出现在8:00-9:00和18:00-19:00,且秋、冬季PM10浓度高于春、夏季;植被区与非植被区的PM10月变化趋势基本一致,植被区PM10浓度低于非植被区,且2月份PM10浓度最大;各季节优良天气排序为夏季(42.60%)> 秋季(31.10%)> 春季(26.43%)> 冬季(15.17%),中度及以上污染天气所占比例排序为冬季(55.52%)> 春季(27.57%)> 秋季(17.77%)> 夏季(3.58%);PM10浓度随降雨强度的增加呈减小的变化趋势,雨前12 h的PM10浓度均值表现为植被区(106.43 μg·m-3)<非植被区(157.39 μg·m-3),雨后12 h的PM10浓度均值表现为植被区(50.96 μg·m-3)>非植被区(38.41 μg·m-3);PM10浓度随风速的增大呈减小的变化趋势,风后12 h的非植被区PM10浓度削减率均值是植被区的1.23倍,且PM10浓度削减率均处于较高水平;PM10浓度随空气湿度的增大呈增大的变化趋势,随温度的升高呈减小的变化趋势.研究结果对进一步治理和控制北京市大气污染有参考价值.  相似文献   

10.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

11.
为评估办公楼密集区大气中PBDEs污染程度、同类物分布特征及其健康风险,采集了典型科研园区室外空气样品(颗粒物+气态),利用GC-MS对PBDEs质量浓度进行测定.结果表明,PBDEs在气态、PM_(2. 5)和PM_(10)中质量浓度分别为2. 3~78. 6、14. 4~335. 3和11. 6~431. 7 pg·m~(-3),平均值为21. 7、96. 9和149. 3 pg·m~(-3),BDE-209是颗粒态PBDEs中质量浓度最高的同系物,占PBDEs总量的50%.颗粒物中PBDEs质量浓度均表现为秋季冬季夏季春季,冬季变化显著,夏季相对稳定.三溴联苯醚主要存在于气态中,随溴原子的增加,颗粒态PBDEs单体的含量比重增大.来源分析说明BDE-209的降解是空气中其他PBDEs组分的重要来源.暴露风险分析显示儿童和成人对PBDEs的呼吸摄入量分别为18. 6 pg·(kg·d)~(-1)和7. 1 pg·(kg·d)~(-1),远小于相关研究中推荐的最低观察不良反应水平1 mg·(kg·d)~(-1); BDE-209对成人和儿童的致癌风险值分别为3. 7×10-9和2. 3×10-9,远小于致癌风险限值10-6,表明该区域大气中PBDEs无健康危害.  相似文献   

12.
杭州市办公场所室内空气中PBDEs的污染现状与特征   总被引:1,自引:1,他引:0  
分析评价了杭州市办公场所中PBDEs的污染现状、污染特征.结果表明,办公场所中PBDEs气相和颗粒相总浓度范围为40.66~141.00 pg·m-3,平均浓度为93.22 pg·m-3,是家庭室内、室外浓度的1.87、5.01倍.BDE-47、BDE-99为办公场所中最重要的两种同系物,分别占总浓度的33.29%、31.99%.PBDEs气相浓度是颗粒相的1.34倍,其中BDE-28、BDE-47、BDE-99主要存在于气相中,BDE-153、BDE-183主要存在于颗粒相中.  相似文献   

13.
杭州市家庭室内空气中PBDEs的污染现状与特征   总被引:3,自引:0,他引:3  
分析评价了杭州市家庭室内空气中多溴联苯醚(PBDEs)的污染现状及特征.结果显示:杭州家庭客厅空气中气相和颗粒相PBDEs的总浓度平均值分别为52.57 pg·m-3,范围为21.37~83.47 pg·m-3、卧室浓度为43.78 pg·m-3,范围为28.72~58.75 pg·m-3,BDE-47和BDE-99是家庭室内空气中最重要的两种单体,占总浓度的62.75%.室内空气中气相PBDEs浓度是颗粒相的1.49倍.高层建筑中的PBDEs浓度与低层建筑差别不大,均处于较低水平.PBDEs的理化性质、环境条件是影响其气固分配的重要因素.  相似文献   

14.
针对苏州市大气中汞的分布特征和污染来源,自2018年1月1日至2018年12月31日对苏州市大气中的气态元素汞(GEM)、气态氧化汞(GOM)和颗粒态汞(PBM)进行1 a的连续监测,并基于浓度权重轨迹分析法(CWT)和浓度玫瑰图法,研究2018年大气汞来源和浓度变化规律.结果表明,监测期间苏州市大气中GEM、GOM和PBM浓度分别在0~53.3 ng·m~(-3)、 0~256 pg·m~(-3)和0~5 208 pg·m~(-3),年均浓度分别为(2.57±2.09)ng·m~(-3)、(5.27±15.7)pg·m~(-3)和(16.0±157)pg·m~(-3).其中,GEM是苏州市大气汞的主要成分,约占99.2%.监测期间,苏州市大气中GEM季节平均浓度表现出冬季(3.17 ng·m~(-3))春季(3.09 ng·m~(-3))秋季(2.30 ng·m~(-3))夏季(1.98 ng·m~(-3))的规律.根据CWT分析结果,苏州大气中汞迁移具有季节性差异:春季和冬季的含汞气团主要来自于内陆,夏季主要来自于苏州本地、黄海和东海,秋季的含汞气团来自于内陆、黄海和渤海.同时研究发现西北方向来自内陆的大气汞浓度较高,东方向来自海洋的大气汞浓度较低.苏州市大气中GEM和PBM平均浓度表现为昼间低夜间高,与大气参数进行相关性拟合,得出大气中GEM日变化规律与太阳总辐射亦呈显著的相关性(r=-0.664,P0.001),与湿度呈显著的相关性(r=0.859,P0.001),与气温呈显著的相关性(r=-0.866,P0.001); PBM与太阳总辐射呈一般相关性(r=-0.554,P0.01),与湿度呈显著的相关性(r=0.835,P0.001),与气温呈显著的相关性(r=-0.831,P0.001).苏州市大气中GOM平均浓度在1 d内出现多次峰值(05:00、 12:00、 18:00和23:00)和谷值(02:00、 10:00、 15:00和19:00).GOM浓度升高与早晚高峰燃料油燃烧排放正相关,亦与O_3浓度升高导致GEM氧化生成GOM正相关.  相似文献   

15.
一年内分季节对重庆市不同功能区大气中二英(PCDD/Fs)污染情况进行了监测研究.结果表明,重庆市大气中PCDD/Fs浓度范围和平均值(以TEQ计)分别为0.017~0.21 pg·m-3和(0.094±0.054)pg·m-3.PCDD/Fs污染水平区域分布和季节变化明显,分别为:商住区>郊区>对照点,冬季>春季>秋季>夏季.其中,冬季时大气中的二英浓度约为夏季时的2.2~4.6倍.主成分分析结果显示,PCDD/Fs同系物分布特征季节变化明显:冬、春季时主要表现为颗粒相中的分布特征,夏、秋季节则主要表现为气相中的.相关性分析表明,PCDD/Fs异构体质量浓度与SO2、NO2、PM10和TSP等常规参数含量大都呈显著正相关,与O3则呈负相关,但未达显著性水平.这表明,重庆大气PCDD/Fs的空间分布和季节变化与SO2、NO2、PM10和TSP等环境空气质量常规指标的分布情况基本一致,重庆大气PCDD/Fs污染与常规污染物的排放源密切相关.  相似文献   

16.
苏州市大气细颗粒物(PM2.5)工业源排放清单   总被引:2,自引:0,他引:2       下载免费PDF全文
通过发放调查表、现场咨询等形式,获得苏州市2012年工业企业基本信息,参照国内外已有研究成果,确定排放因子,并根据实际情况对钢铁行业进行了系数修订,得到苏州市工业源大气细颗粒物排放清单.结果表明:苏州地区工业源PM_(2.5)排放总量约为6.57×10~4t,工艺过程源和固定燃烧源分别占94%和6%;张家港地区贡献率最大,为51%,其次为常熟13.8%;姑苏区贡献率最小,为0.13%;苏州市平均排放强度为10.42 t·km~(-2),张家港排放强度最大,达到了43.57 t·km~(-2),其次为新区12.38 t·km~(-2);钢铁与炼焦、火电、水泥行业是PM_(2.5)的主要贡献者,分别为50%、17%和14%;空间分布显示苏州北部相对细颗粒污染较大,重点企业多集中在张家港、常熟地区,东部污染较少.  相似文献   

17.
对珠江三角洲佛山市顺德区容桂镇电器工业区河涌沉积物多溴联苯醚(PBDEs)的含量进行了空间和垂直分布研究.选择该镇中心城区内河涌作为研究河道,根据河涌水流情况选取8个采样点采集沉积物样品.所有样品中均检出PBDEs.各监测点的PBDEs总含量变化范围为62~349 ng.g-1(平均为178 ng.g-1),各采样点的浓度差异较大.其中,十溴联苯醚含量为56~337 ng.g-1(平均为171 ng.g-1),占PBDEs总含量的90%~99%(平均95%).所检测到的部分同系物(如BDE-196、197和203)可能是BDE-209的降解产物.PBDEs的垂直分布模式显示,0~10 cm层面样品的PBDEs浓度为147 ng.g-1,30~40 cm层面样品的PBDEs浓度为260 ng.g-1,PBDEs在沉积物中的丰度随垂直深度的增加而增加.12种同系物在采自各个深度层样品中的比例基本相同,由十溴工业品来源的BDE-209、208、207和206占总PBDEs的94%,而五溴和八溴所占比例较低.由此可见,该地区普遍存在PBDEs污染,其中十溴联苯醚是最主要污染物,这可能与十溴工业品是电器工业主要使用的阻燃材料相关.  相似文献   

18.
广州某工业区大气中PCDD/Fs含量水平及其季节性变化特征   总被引:2,自引:1,他引:1  
青宪  苏原  苏青  张素坤  任明忠 《环境科学》2014,35(2):464-469
通过对广州某工业区大气中2,3,7,8-PCDD/Fs的季节性监测,并对大气中PCDD/Fs的浓度与季节性变化进行了分析.结果表明,该工业区大气中PCDD/Fs的浓度范围为2.33~75.4 pg·m-3,平均值为23.2 pg·m-3,毒性当量浓度I-TEQ范围为0.229~10.7 pg·m-3,平均值为2.00 pg·m-3,高于日本环境空气质量标准推荐年均值0.6 pg·m-3.该工业区PCDD/Fs浓度季节性变化明显,最高的季节为春季(37.8 pg·m-3),浓度最低的季节为夏季(13.5 pg·m-3),其次为秋季(22.3 pg·m-3)和冬季(19.1 pg·m-3);毒性当量浓度变化高低顺序为:春季(5.58 pg·m-3)>夏季(1.06 pg·m-3)>秋季(0.839 pg·m-3)>冬季(0.525 pg·m-3).降雨、季风的季节性变化可能是引起大气中PCDD/Fs浓度季节性变化的原因.  相似文献   

19.
为准确评估济南市夏季环境空气中PBDEs(多溴联苯醚)的污染情况,利用气相色谱-负化学离子源-质谱(GC-NCI-MS)方法,对采集到的大气颗粒物滤膜和气相样品进行了分析,得到不同粒径颗粒相和气相PBDEs在济南市夏季环境空气中的质量浓度.结果表明:观测期间,济南市环境空气中TSP(总悬浮颗粒物)、PM10和PM2.5中的ρ(PBDEs)分别为(224.1±14.0)(156.5±43.7)(110.2±27.4)pg/m3,质量浓度较高的3种PBDEs单体分别为BDE209、BDE99、BDE183;气相中ρ(PBDEs)为(54.8±13.2)pg/m3,其中,质量浓度较高的单体分别为BDE209、BDE47、BDE99.通过主因子分析发现,不同粒径颗粒物上吸附的PBDEs特征单体不同,TSP中以五溴联苯醚为主,PM10中以八溴联苯醚和五溴联苯醚为主,PM2.5中则以五溴联苯醚、八溴联苯醚、十溴联苯醚为主.通过将2种模型的预测值和实测值进行比较发现,稳衡态模型比KOA(辛醇-空气分配系数)模型更好地模拟了PBDEs的气-粒分配情况.在稳衡态模型下,PBDEs在气-粒分配中接近于平衡状态.高溴代PBDEs主要分布于颗粒相中,而低溴代PBDEs的真实情况不同于理论预测结果,BDE99及BDE47在颗粒相的分配比高于50%,说明济南市低溴代PBDEs也容易吸附在颗粒相中.根据计算的PBDEs呼吸暴露水平可知,PM2.5上PBDEs呼吸暴露量占TSP呼吸暴露量的49.1%,儿童约是成人的1.5倍.济南市普通儿童和成人对BDE99最高总摄入量分别为234.78和169.57 pg/(kg·d),均低于BDE99最大允许摄入量260 pg/(kg·d).根据US EPA(美国环境保护局)发布的PBDEs健康风险评价方法(EPA/540/R/070/002),利用国内外相关参数分别计算空气吸入致癌风险指数发现,济南市夏季环境空气中PBDEs的致癌风险处于较低水平.研究显示,济南市夏季环境空气中不同粒径颗粒物PBDEs的质量浓度处于较低污染水平,其产生的潜在健康风险也较低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号