首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源.  相似文献   

2.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   

3.
基于火电企业在线监测数据、环境统计数据、排污许可及火电排放清单等,分析各统计口径下的海南火电大气污染物排放量差异,并基于在线监测数据分析海南省火电排放时间变化规律.分别设置现状、排污许可及超低排放3种情景,采用CALPUFF模型分析3种情景下火电厂对海南大气环境的影响.结果显示,不同统计口径下火电厂各污染物排放量差异较大,最大差值可达到5.65倍;在时间维度上,海南省火电行业污染物排放量月际分布较平稳,每月污染物排放量约占全年的7%~10%,24h变化呈现明显“两峰两谷”特征.在大气环境影响方面,火电企业大气SO2、NOx、PM2.5、PM10浓度分布总体呈现西部高东部低的趋势.现状情景下火电企业对各城市年均浓度影响范围为SO2 0.001~0.015μg/m3、NOx 0~0.01μg/m3、PM10 0.001~0.006μg/m3、PM2.5 0~0.003μg/m3,最高浓度基本出现在东方市、临高县.火电厂对大气环境的影响程度为许可情景>现状情景>超低情景,执行排污许可时火电厂排放PM10和NOx对各城市均值年均浓度较现状情景分别增加50%和38%;全面实施超低排放后,火电厂对大气环境影响有明显改善,SO2和PM2.5对各城市均值年均浓度较现状情景分别降低57%和69%.  相似文献   

4.
在南京市仙林地区住宅楼内和室外采集PM2.5样品,分析PM2.5中金属的污染特征及主要来源.结果显示,室内外PM2.5平均浓度分别为80.56μg/m3和96.77μg/m3,室内外PM2.5浓度比(I/O)平均值为0.87.除Mg外,室外其他金属平均值均高于室内.元素Pb室内外浓度相关性最高,R值为0.807.室内外PM2.5中金属元素Cd、Cu、Pb、Zn、As、Co、Cr和Ni富集程度较高.主成分分析结果显示,室外PM2.5中金属的主要来源为土壤尘、交通排放、金属冶炼、垃圾焚烧等;室内PM2.5中金属可能的来源为室外颗粒物的渗透及室内烹饪和家具材料等.  相似文献   

5.
为验证城市空气污染物排放及协同控制后的周期性规律,利用小波变换对武汉市2013~2020年共计2421d的逐日PM2.5、PM10及臭氧浓度数据进行分析.结果表明:可吸入颗粒物污染情况逐年改善,PM2.5浓度年均值由80.5μg/m3降至45.3μg/m3,超标比例由44%降至11%;PM10浓度年均值由113.6μg/m3降至72.6μg/m3,超标比例由22%降至2%.臭氧污染未有明显改善,浓度年均值在90~100μg/m3间波动.PM2.5、PM10与臭氧浓度均表现出明显的周期性,PM2.5浓度主周期300d、次周期140d左右;PM10浓度主周期300d、次周期125d左右;臭氧浓度主周期300d、次周期143d左右.PM2.5与PM10的周期与位相均相...  相似文献   

6.
为了评估PM2.5排放导致女性生殖系统癌症的风险以及城乡差异,以卵巢癌为例,分析了中国东部地区2000~2011年期间PM2.5和卵巢癌发病率和死亡率的相关关系,并估算了PM2.5排放导致卵巢癌发病率和死亡率升高的风险.结果表明,城市地区卵巢癌发病率和死亡率显著高于农村,在城市地区,PM2.5与卵巢癌发病率显著相关,PM2.5年平均浓度每上升10μg/m3,城市地区卵巢癌发病率上升的相对风险为9.3%(相对于PM2.5年平均浓度为35μg/m3时),每十万人口升高0.51人.  相似文献   

7.
于2016年7~8月采集了陕西省西安市(城市)及蔺村(农村)夏季昼夜PM2.5样品,分析其有机碳(OC)、元素碳(EC)和无机离子等化学组分的含量,探讨关中平原城市和农村地区PM2.5的化学组成和来源的差异.结果表明,采样期间西安和蔺村的PM2.5浓度分别为(49.7±22.8)和(62.6±14.2)μg/m3.西安PM2.5中OC和EC的浓度[(6.5±2.5)μg/m3,(3.2±1.8)μg/m3]与蔺村[(6.8±1.8)μg/m3,(3.8±2.3)μg/m3]相当.西安OC/EC比值白天(2.6)高于夜晚(1.9),蔺村反之(白天:1.6;夜晚:2.7),主要是因为夜间城市地区重型卡车运输活动增强导致排放更多EC,而夜间农村地区人为活动较少导致EC排放显著降低.西安和蔺村无机离子总浓度分别为(20.2±14.6)和(30.1±10.5)μg/m3,占PM2.5浓度的40.6%和47.6%.蔺村SO42-的平均浓度高达19.0μg/m3,占PM2.5浓度的30%以上,远高于西安(9.4μg/m3和18.9%),主要与农村固体燃料(煤和生物质)使用有关.西安NO3-和Ca2+的浓度及其对PM2.5的贡献、NO3-/SO42-比值均明显大于蔺村,表明城市地区受机动车尾气和扬尘的影响更大.西安K+与Ca2+和Mg2+的相关性较强,而蔺村K+与EC的相关性显著强于西安,说明西安市区K+由粉尘源主导,而农村地区则主要来自生物质燃烧.  相似文献   

8.
采集了杭州市污染天和非污染天的PM2.5样品,并进一步获取了PM2.5中可溶铁(FeS)的浓度及%FeS.研究结果显示,采样期间气溶胶中总Fe(FeT)的浓度为(629±296)ng/m3(150~1167ng/m3),FeS的浓度为(51.4±30.5)ng/m3(4.2~90.5ng/m3),%FeS为(7.8%±3.5%)(1.5%~12.9%).污染天PM2.5、FeT和FeS的浓度均明显高于非污染天,且污染天%FeS为9.3%,高于非污染天的5.1%.本研究发现%FeS的差异主要与Fe的来源和大气酸化过程相关,污染天Fe受交通排放和工业排放等人为源的影响更大,且污染天大气酸化程度更强.  相似文献   

9.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   

10.
为了解沈阳市空气细颗粒物的污染特征及主要来源,于2015年2月、5月、8月和10月在沈阳市采集PM2.5样品,对PM2.5质量浓度及其化学组分(无机元素、含碳组分和水溶性离子)进行测定.结果显示,采样期间沈阳市PM2.5平均质量浓度为69 μg/m3,是《环境空气质量标准》(GB 3095-2012)年均二级标准限值(35 μg/m3)的2.0.水溶性离子在PM2.5中的含量最高,其次为碳组分、无机元素.富集因子结果表明:沈阳市富集因子值最高的元素来自于燃煤、交通污染、工业排放等污染源.正交矩阵因子分析(PMF)结果表明:PM2.5结果中燃煤源、二次源、工业源、扬尘源和交通源的贡献比分别为33.4%、27.2%、16.7%、11.5%、11.2%.  相似文献   

11.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑.  相似文献   

12.
以ArcGIS软件为平台,采用唐山市206个在线监测点数据,分析了PM2.5在采暖期、重污染期、非采暖期3个时期的全局和局部空间自相关性,研究其大气污染空间分布特征.结果表明,3个时期均具有一定的空间自相关性,且重污染期的全局空间自相关最强;采暖期和重污染期PM2.5高值聚类主要发生在中部地区,低值聚类则主要分布在北部山区及沿海少部分区域;非采暖期高值聚类主要分布在丰润区和丰南区,低值聚类发生在遵化市北部地区.通过空间插值模拟全市的PM2.5分布状况,结果显示唐山市在重污染期PM2.5均值最高格点值达241μg/m3,而非采暖期最低值只有37μg/m3;基于PM2.5浓度变化特征和空间分布,将唐山所辖18个区县划分为5个区域,针对各区域提出PM2.5分区管控措施建议.  相似文献   

13.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

14.
在紧邻天津机场跑道的点位对机场区域大气常规污染物开展连续监测,应用广义加性模型(GAM),针对2017年3月1日~2018年2月28日间的NO2及O3,识别其影响因子,并确定因子贡献率.选取因子包括环境因子(SO2、NO、NO2、O3、CO、PM2.5、PM10、前一小时NO2/O3浓度),气象因子(风向、风速、温度、露点温度、修正海压)及航空活动因子(起飞、着陆).结果显示:机场区域NO2日均值为17.6~123.6μg/m3,超标天数共计38d,占比约13%;O3日均值为1.0~276.1μg/m3,超标天数占比26%,污染主要集中在夏季;环境因子是主要影响因子,累积贡献率在56%~89%;航空活动作为区域重要污染源,对大气NO2、O3存在一定影响,最高贡献率可达20%;气象因子相对贡献较低.全部GAM的Adj-R2为0.85~0.96,筛选的影响因子能够有效解释区域环境空气污染物浓度的变化.  相似文献   

15.
基于2015~2019年广州4个不同国控站点类型的大气污染物监测数据,研究了广州各站点类型颗粒物(PM2.5)和臭氧(O3)的污染特征,并分析了O3污染季节和PM2.5污染季节PM2.5和O3的相关性及相互作用.结果表明:2015~2019年广州各站点类型PM2.5浓度总体呈下降趋势,O3浓度呈上升趋势.不同污染季节PM2.5与O3浓度均呈正相关.O3污染季节二次PM2.5的生成对颗粒物的影响显著大于一次PM2.5,随着光化学水平的升高,一次PM2.5的贡献浓度基本不变(均在21.03~31.37μg/m3范围内),贡献率逐渐下降;而二次PM2.5的贡献浓度逐渐升高(3.51~7.72 μg/m3升高到16.04~18.45μg/m3),贡献率也逐渐升高(11%~27%升高到34%~44%),且呈倍数增加.不同站点类型贡献差异明显,背景站点二次PM2.5的贡献最大,城区站点在中和高光化学水平下二次PM2.5的贡献最小;PM2.5污染季节各站点类型在不同PM2.5污染水平下O3浓度均具有差异性,总体上均呈现背景站点>郊区站点>城区站点的特点.气溶胶的消光作用和非均相反应均显著促进O3生成,随着PM2.5浓度升高,各站点类型的O3浓度峰值逐渐升高,由62.12~83.82μg/m3升高到92.49~135.4μg/m3;O3变化率峰值也逐渐升高,由8.42~10.02μg/(m3·h)升高到21.33~27.04μg/(m3·h).进一步促进了广州PM2.5和O3浓度的协同增长.  相似文献   

16.
为研究南京夏季大气复合污染的特征,2016年8月15日~9月15日期间开展了强化观测实验,本文利用仙林、鼓楼80m楼顶2个站点的强化观测资料,结合草场门常规监测资料,统计分析了南京不同地区夏季O3和颗粒物(PM2.5、PM10)的浓度特征和相关性,以及郊区水溶性离子与其气态前体物的转化率变化特征.研究表明:3个站点O3平均小时浓度为100.3μg/m3.PM2.5和PM10浓度分别为41.1和67.8μg/m3,郊区夜间存在颗粒物浓度高值.SO42-、NO3-、NH4+浓度总和占PM2.5浓度的比值达到61%,OC(有机碳)/EC(元素碳)比值范围为0.8~4.0,日均值超过2.0的天数占77%,城、郊均存在二次污染.白天O3与颗粒物(PM2.5)浓度呈显著正相关变化,硫转化率(SOR)、氮转化率(NOR)分别与O3浓度、湿度显著正相关.HONO主要在夜间积累,HCl和HNO3浓度峰值出现在下午.与其它无机盐相比,NH4+在总氨中所占比例明显偏低,大气中的氨主要以气态NH3存在.观测期间O3污染较重,O3与颗粒物的正相关关系显著,化学反应在颗粒物积累过程中具有重要贡献,此外还可能存在城区向郊区的污染输送.  相似文献   

17.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

18.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号