首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
基于商业住宅、农林牧渔企业、交通设施等类型的城市设施兴趣点(POI)数据建立了针对居民生活源、农业源、交通源等非点源的排放清单分配方法.以北京市为例,基于2015年高德地图的POI数据对清华大学MEIC排放清单进行了3km×3km及1km×1km的高空间分辨率分配,并基于分配后的排放清单,采用CMAQ空气质量模式对2015年1月5个市内监测站点PM_(2.5)的模拟值及监测数据进行对比,以检验该分配方法的准确性.结果表明,利用POI数据进行空间分配可以更加有效地反映出排放源的空间分布特征;CMAQ空气质量模式模拟结果中,采用该方法分配后的排放清单较直接面积插值的排放清单标准化平均偏差(NMB)降低40%左右,标准化平均误差(NME)降低10%左右.  相似文献   

2.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

3.
工业锅炉排放大量的烟尘、SO2和NOx,已经成为我国重要的大气污染源。由于缺少详细的统计资料,国内暂时没有网格化的工业锅炉源大气污染物排放清单。本研究将工业锅炉作为独立的排放源,对其排放的大气污染物进行化学物种分配、时间分配和空间分配,编制网格化排放清单,实现运用空气质量模型对工业锅炉的环境影响进行研究的可能性。进行空间分配时首次提出按照各省的工业锅炉煤炭消耗量和省内各城市的人口数量的比例进行分配的思路。  相似文献   

4.
应用MOVES-2014a模型并对其输入参数进行了本地化修正,计算了 2018年渭南市道路移动源污染物的排放因子和排放总量.基于渭南市路网分布和GIS信息及车流分布对污染物总排放量进行了空间和时间分配,建立了 1 km×1 km和l h分辨率的排放清单.结果表明,渭南市机动车排放CO、NMVOCs、NOx、NO2、NO...  相似文献   

5.
为进一步推动我国大气污染源排放清单的发展,详细回顾了我国大气污染源排放清单的发展历程及面临的挑战.我国大气污染源排放清单起步于20世纪80年代,2000年之后尤其是2014年,原环境保护部发布了一系列大气污染源排放清单编制技术指南,使我国大气污染源排放清单工作得到了迅速发展.30多年来基本形成了结合我国实际情况的大气污染源分类、大气污染物排放系数、大气污染物排放量确定方法等大气污染源排放清单相关技术方法.但目前我国尚未建立起排放清单编制的规范化工作程序,国家、省级和城市级环保部门在大气污染源排放清单工作中的分工尚不明晰,清单编制没有融入日常环境管理工作中,现有排放清单工作和研究成果相对分散、缺乏系统性,排放清单对环境管理的支撑作用尚未得到充分发挥.在综合分析了我国大气污染源排放清单取得的进展和面临挑战的基础上,提出如下建议:进一步完善我国大气污染源排放清单技术体系,使排放清单工作制度化、程序化、规范化,明确国家、省级和城市级环保部门在大气污染源排放清单工作中发挥的作用,使大气污染源排放清单成为各级环保部门每年必须完成的工作;进一步推广结合网格化管理、基于区县和乡镇调研的城市大气污染源排放清单编制技术;加强排放清单校核和不确定性分析研究等.   相似文献   

6.
基于大数据分析的杭州市农业源高分辨率氨排放清单研究   总被引:1,自引:0,他引:1  
基于实地调查并辅以统计的方法获得大数据,采用排放因子法,估算了杭州市2015年农业源氨排放清单,并选取经纬度坐标、土地类型和人口等数据作为权重因子,建立1 km×1 km高精度网格化空间分布,研究了该地区农业排放源氨排放空间分布特征.结果表明:杭州市2015年农业源NH3排放总量为54787.9 t,其中畜禽养殖和农田种植是最主要的氨排放来源,分别占农业源总排放量的86.7%和12.8%.在畜禽养殖各主要环节的氨排放过程中,圈舍固态粪便的氨排放贡献量最大,占总氨排放量的52.8%;其次是存储固态,占总氨排放量的35.1%.氮肥施用主要集中在萧山区、建德市、临安市和余杭区.秸秆堆肥和秸秆焚烧与秸秆综合利用率高低密切相关,两者氨排放量占有率不高,占杭州市农业源氨排放总量的1%以下.  相似文献   

7.
珠江三角洲大气面源排放清单及空间分布特征   总被引:33,自引:7,他引:26       下载免费PDF全文
估算了珠江三角洲地区2006年大气面源污染物的排放清单,并利用2006年珠江三角洲人口分布栅格数据作为代用空间分配权重因子,建立了该地区大气面源3km′3km的SO2、NOx、PM10和VOC网格化排放清单.结果表明,2006年珠江三角洲大气面源排放的SO2为1.12′105 t, NOx为5.25′104 t, PM10为1.6′105 t, VOC为3.14′105 t.SO2、NOx和PM10排放量较大的区域集中在广州市区、佛山、东莞和中山,而VOC排放量较大的区域位于广州市区、东莞和深圳.  相似文献   

8.
成都市工业源重点VOC排放行业排放清单及空间分布特征   总被引:2,自引:0,他引:2  
以2013年为基准,采用排放系数法对成都市区域范围内工业源的VOC排放进行了核算,利用GIS工具构建成都市1 km×1 km网格化排放清单,分析了VOCs的空间分布特征.研究结果表明:2013年成都市工业源VOC排放总量为(5.77±3.35)×10~4t,其中溶剂使用源排放(3.09±4.93)×10~4t,工艺过程源排放(2.35±3.82)×10~4t,化石燃料燃烧源排放(0.21±0.61)×10~4t,生物质燃烧源排放(0.12±0.48)×10~4t.从工业源VOC排放的空间分布特征上看,都江堰、郫县、温江和崇州是最主要的贡献区县,涉及的排污企业类型主要包括钢铁、化工和水泥行业.  相似文献   

9.
珠江三角洲大气排放源清单与时空分配模型建立   总被引:10,自引:0,他引:10  
收集整理2012年珠江三角洲地区(简称“珠江三角洲”)各种大气人为源及天然源基础活动数据,以排放因子法“自下而上”为主计算多污染物排放量,并建立本地化污染物空间分配方案及基于行业排污特征的时间分配谱,构建了具备时空分布属性的区域性网格化大气源排放清单.清单结果显示,2012年珠江三角洲SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为55.2万t、102.9万t、349.2万t、95.2万t、38.5万t、153.9万t和17.7万t. 固定燃烧源是珠江三角洲SO2和NOx的最大排放贡献源,其中电厂和锅炉分别贡献了35.0%和41.8%的SO2排放,以及28.2%和16.2%的NOx排放;VOCs的最大贡献源是过程源,其中家具制造、石油精炼、油气码头排放量总和占比为52.4%;扬尘源是颗粒物的主要来源之一,对PM2.5的排放贡献达42.3%;NH3的主要排放源为畜禽养殖和化肥施用源,两者排放量占比分别为50.7%和26.8%.珠江三角洲大气污染物空间与时间分布结果显示,高排放污染源主要集中于“东莞-广州-佛山”一带,呈半环带状结构分布;白天时段(9:00~20:00)的排放强度明显高于夜晚时段(21:00~次日8:00);夏秋季节(4~10月)的排放强度略高于冬春季节(11月~次年3月).  相似文献   

10.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

11.
挥发性有机物(VOCs)是影响大气复合污染形成的关键前体物,来源众多且化学组成差异较大. 为满足城市尺度VOCs精准管控需求,本文基于“自下而上”的人为源活动水平数据与植被遥感资料,并与文献调研和实测VOCs源谱信息相耦合,采用排放因子法构建了城市尺度高空间分辨率VOCs组分清单的编制方法,并以河南省驻马店市为研究区域开展应用. 结果表明:①本文构建的清单编制方法能够获取城市尺度高空间分辨率的VOCs组分排放清单,根据现阶段可获取的活动水平分辨率,清单分辨率可在1 km×1 km及以上. ②驻马店市烯烃组分排放量最高,其次是烷烃和含氧VOCs (OVOCs),其中排放量较高的物种为异戊二烯、苯乙烯和乙酸乙酯等;对于臭氧生成潜势(OFP),烯烃和OVOCs是主要贡献者,OFP贡献较高的物种为异戊二烯、乙烯、乙醛和甲醛等;在空间分布上,研究区域VOCs排放空间分布呈明显差异,林地茂密、工业企业密集、人口和路网密度较大的区域VOCs排放量较高. ③将清单结果与受体模型解析结果对比发现,二者在主要源类的识别上基本一致,印证了所构建清单的可靠性. 对比PMF解析因子谱和清单参考源谱发现,清单参考源谱中燃烧源以及工艺过程和溶剂使用源适用性较好,移动源谱适用性较低. 研究显示,驻马店市VOCs总量及组分排放空间特征明显,高空间分辨率清单可为城市差异化管理提供基础.   相似文献   

12.
CSGD(crowd sourcing geographic data,众源地理数据)是通过互联网向大众或相关机构提供的一种开放地理空间数据,具有易获取、时效性好、准确性高等特点,在排放清单时空分配方面具有应用潜力.然而,现有排放清单处理工具不支持CSGD数据直接输入且难以满足排放清单空间分配和空气质量模式所需清单格式,因此,亟待开发一套可以拓展该类数据在排放清单领域应用的工具.以CSGD中的POI(城市设施兴趣点)数据为主要研究对象,基于QGIS平台、C++语言及Python语言,开发了在Windows系统下的ISAT(inventory spatial allocate tool,排放清单空间分配工具)工具及在Windows或Linux系统下的ISAT.M工具.结果表明:ISAT工具以POI数据为基础制作出的空间分配结果与排放源排放强度的空间分布特征的一致性较好;ISAT.M工具输出的inline清单可以作为CMAQ空气质量模式及其DDM敏感性分析模块的输入文件并开展模拟,通过与SMOKE模型的关闭源法模拟结果对比发现,二者在数据及空间分布上呈较好的一致性.研究显示,CSGD数据应用于排放清单空间分配可较好地反映排放源空间分布特征,同时由于此类数据存在信息冗杂、近郊区数据缺失等问题,在应用过程中应注意数据清洗及数据种类的选取工作.   相似文献   

13.
张逸扬  周红根  乔贺  徐进  刘寅 《环境科学研究》2021,34(10):2306-2315
南京市作为长三角地区的核心城市之一,工业发达,大气污染状况较为严重.为深入研究南京市污染状况,利用MODIS以及CALIPSO的气溶胶产品对南京市2011-2019年气溶胶特性进行分析,并基于地基反应性气体分析仪数据分析了冬季南京市大气中4种常见反应性气体(SO2、NO、NO2、O3)的体积分数时序状况.结果表明:①南京市2011-2019年气溶胶光学厚度(AOD)整体呈下降趋势,冬季AOD值可达0.7,污染程度为四季中最高,且气溶胶以粗粒子和吸收性粒子为主.②南京市近地层大气(2 km以内)以大粒子和不规则颗粒物为主,2~6 km高度层内细粒子与规则颗粒物的占比逐渐增多,且2~6 km高度层内粒子的体积大小变化不大.③冬季4种常见的反应性气体中,φ(NO)在大气中的变化最为显著,且最高值可达160×10-9,φ(NO2)与φ(O3)在大气中的变化趋势相反.由于排放限制措施、工厂脱硫措施的推广以及光化学反应的影响,导致φ(SO2)较低,仅在3×10-9左右.结合OMI卫星观测数据发现,受新冠肺炎疫情下工厂停工的影响,2020年初南京市φ(NOx)维持在较低水平.研究显示,近年来南京市颗粒物污染状况有所改善,但仍需注意粗颗粒物的排放,需严格控制工厂气态污染物,尤其是NOx的排放.   相似文献   

14.
道路机动车尾气排放是造成城市近地面空气污染的主要原因之一,建立基于城市功能区划分的道路机动车大气污染物排放清单对改善中观尺度的城市空气质量具有重要辅助作用.本文以厦门市海沧区为例,基于城市功能区划分方法,结合各功能区内监测道路的机动车通行量实测数据,建立道路机动车大气污染物排放清单,并分析各功能区道路机动车大气污染物排放特征.结果发现,海沧区道路机动车尾气排放物中CO的排放贡献率最高,工业区和居住区的道路机动车大气污染物排放量对海沧区的空气污染贡献率最大,海沧区夜间大气污染物的主要排放源来自于工业区道路机动车大气污染物排放;生态服务区及公共管理与公共服务区的道路机动车排放特征受相邻工业区机动车大气污染物排放的影响较为显著.研究表明:城市功能区分布欠合理是导致道路机动车大气污染物高排放量的重要原因之一;基于城市功能区划分构建道路机动车大气污染物排放清单的研究方法,不仅可为中观尺度下的城市大气污染排放情况提供有效的调查途径,而且能为城市功能格局的合理规划提供重要的理论依据.  相似文献   

15.
餐饮过程排放的废气正成为大城市大气污染的重要来源之一.根据成都市2013年排放清单更新的研究成果,综合运用本地化的餐饮排放因子、排放活动水平的调查成果和成都市统计年鉴的统计数据等信息,对成都市餐饮源的PM_(2.5)排放总量进行了估算,其结果为4740 t·a~(-1).为了对区域的餐饮废气排放进行空间分配,本文抓取了互联网兴趣点POI信息.通过这些信息,对成都市的社会餐饮、学校食堂餐饮和家庭餐饮的空间来源进行了表征,对成都市生活源中餐饮污染物排放的空间分布规律进行了探索,并提出了新的餐饮源高分辨空间分配方法.结果表明,基于POI空间分配的2013年成都餐饮源单位面积年排放强度均值为0.29 t·km~(-2)·a~(-1),主城区均值为3.47 t·km~(-2)·a~(-1),全市的排放量分布区间为0~35.7 t·km~(-2)·a~(-1).互联网POI信息可以作为研究城市餐饮源空间分布的重要数据来源,在实际应用上更适于表征社会餐饮点源污染.  相似文献   

16.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

17.
方利江  杨一群  叶观琼 《环境科学》2022,43(10):4380-4391
以浙江省为研究区域,通过收集11个地级市各类氨排放的活动水平数据,采用排放因子法建立了2008~2018年浙江省人为源氨排放清单,并利用ArcGIS进行1 km×1 km空间网格分配.结果表明,2008~2018年浙江省人为源氨排放量总体呈现下降趋势,年均下降率约3.97%;2018年浙江省氨排放量为108.52 kt,其中农业源为90.02 kt,非农业源为18.50 kt,排放强度为1.03 t ·km-2;杭州市、嘉兴市和温州市的氨排放量高于其他城市,分别占全省总量的14.72%、11.86%和11.80%;空间分布特征显示,氨排放主要分布在浙江省北部区域,呈现出"北高南低"的排放趋势;不确定性分析表明,氨排放量模拟平均值为108.37 kt,在95%置信区间的不确定度范围为-5.40%~5.60%.  相似文献   

18.
中国中东部地区的空气污染主要集中在京津冀、长三角、珠三角、东北地区及汾渭平原等区域,各区域的污染排放特征各异.本文应用基于CMAQ(The Community Multiscale Air Quality)模式的自适应"nudging"源反演方法,反演中国中东部地区2016年12月—2017年1月逐日NOx污染源,分析上述主要污染区的污染物排放强度空间分布特征,并与2016年MEIC(The Multi-resolution emission inventory for China)排放源进行比较,检验反演源的可靠性.结果表明,2016年冬季各个区域反演源NOx排放强度空间分布特征与2016年MEIC排放源基本一致.京津冀地区高强度排放区域形成沿山前区域东北-西南走向的NOx高强度排放带;长三角地区NOx高强度排放区域位于常州、苏州、上海和湖州等城市构成的城市群;珠三角地区NOx高强度排放区域位于以广州为中心的大范围城市群且排放强度呈现向四周逐渐降低的放射状分布;东北地区NOx高强度排放区域空间分布特征呈现以城市为中心且稀疏分布;汾渭平原排放区域呈现以城市为中心且向峡谷中间集中分布,排放区域轮廓与汾渭平原狭长的新月状相符.  相似文献   

19.
区域高时空分辨率VOC天然源排放清单的建立   总被引:20,自引:9,他引:11  
将中尺度气象模式MM5应用于估算VOC天然源排放的研究,建立了高时空分辨率VOC天然源排放清单的估算方法.根据方法需要,确定了我国部分树木排放异戊二烯和萜烯的标准排放因子,各植被类型排放各种VOC的标准排放因子,以及各植被类型季节平均的叶生物量密度.应用该方法估算了华南地区满足区域空气质量数值模拟要求的高时空分辨率VOC天然源排放清单.结果表明,华南地区夏季典型日的VOC天然源排放总量约1.12×104t,VOC排放速率具有明显的时空分布,其中地理分布取决于植被类型及其分布,日变化规律则依赖于太阳辐射和温度的高低.并讨论了VOC天然源排放估算过程中误差的来源  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号