首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以2006年中国地区的INTEX-B排放清单为基础,采用CMAQ模式污染源同化方法,反演更新了2013年1月重霾污染过程华北地区的SO2和NOx排放源;应用WRF-CMAQ模式以及2006年INTEX-B初始排放源和2013年1月改进的排放源,分别模拟了1月9-15日和28-31日两次持续重霾污染过程的SO2和NO2浓度,并与华北地区47个环境监测站点实测值进行对比,重点分析了基于初始源和同化反演源的模拟效果及其改进原因;本文亦采用2012年清华大学编制的东亚地区MEIC排放清单评估了SO2和NOx同化反演源的合理性.分析结果表明:①CMAQ模式污染源同化方法可适用于重霾污染过程,即采用同化反演源模拟的SO2、NO2浓度时空变化特征与实测值较一致,而且可反映SO2、NOx排放源强的动态变化特征;②基于同化反演源的SO2、NO2浓度模拟效果明显优于2006年INTEX-B排放源,其时间变化趋势与实测值较一致,而且可模拟重霾污染过程SO2、NO2浓度的峰值;③采用反演源模拟的SO2、NO2浓度空间区分布特征与实测值较一致,而且可较好反映重污染区的极值分布特征;④经污染源同化改进后SO2、NO2模拟浓度与实测值的相关系数有所提高,误差明显减小;SO2的改进效果略优于NO2,这与污染源对两种污染物浓度的影响差异有关;⑤初始源中SO2、NOx排放源的空间分布和强度与2012年清华大学编制的排放源强差异较大,而同化反演源的空间分布和强度均接近于上述2012年排放源,较好反映出重点地区的高污染源分布特征.本文研究结果将为改进重霾污染过程的空气质量预报、减小自下而上建立的排放源清单不确定性、评估SO2、NOx等排放源的影响效应以及不同气象条件下区域排放源的动态调控等提供新技术途径和研究思路.  相似文献   

2.
空气质量的改善是当前中国社会经济转型及实现绿色可持续发展的重要目标之一.基于中国268个城市2007-2016年的氮氧化物(Nitrogen Oxide Emissions,NOx)排放量数据,首先利用自然正交函数(Empirical Orthogonal Function,EOF)分析了268个城市NOx排放的时空演变特征,然后采用一种新的空间分异性分析方法"地理探测器"从空间异质性视角探讨了NOx排放的社会经济驱动因素.结果表明:①EOF第一模态特征向量的高值出现在京津冀地区、山东半岛的淄博、潍坊、济宁和临沂,以及长三角的上海、无锡、南京、苏州和杭州;低值则集中在西南的云贵地区、东南的广东、福建及西北的宁夏.②年尺度上NOx排放的时间系数变化大致呈现先降后升再降的非线性波动.③因子探测分析结果显示,民用汽车总量对NOx排放分布的影响最大,其次是城市人口和工业总产值.不同风险因子的交互作用均大于单因子的作用,其中,城市人口与人均GDP因子之间的交互作用强度最大,工业总产值与民用汽车总量的交互作用强度次之,人均GDP与城市建设用地面积的交互作用强度排第3.④风险区探测结果显示,社会经济驱动因子中的城市人口、人均GDP、工业总产值、城市建设用地面积、全社会用电量和民用汽车总量均与NOx排放呈正相关.京津冀、山东半岛和长三角等发达城市为NOx排放的高风险区,是社会经济驱动因素的多个风险因子共同作用的结果.  相似文献   

3.
卫星遥感反演京津冀地区2011-2017年氮氧化物污染变化   总被引:1,自引:0,他引:1  
基于POMINO AMFv6反演构架和高分辨率WRF-CMAQ模拟资料重构DOMINO v2大气质量因子,开发了京津冀地区高精度NO2对流层垂直柱浓度卫星数据,并结合反演模型分析了研究区域2011-2017年NO2柱浓度及重点城市NOx排放强度的时空演变.2011-2017年间,京津冀地区NO2柱浓度在北京-天津-唐山及石家庄-邢台-邯郸形成两个核心污染高值区,保定、廊坊、秦皇岛、沧州和衡水分布于东南部的污染背景中,构成污染次高值区,而位于西北部的张家口和北部的承德相对较为清洁,仅在对应的市辖区出现局地污染峰值.京津冀地区柱浓度平均水平在2011-2017年间下降了27.2%.2011-2013年间北京、天津、唐山和石家庄市的NOx平均排放强度分别为108.3、139.5、241.4和178.6 mol·s-1,而2015-2017年间下降至98.0、108.2、197.6和85.8 mol·s-1.基于卫星遥感手段的综合分析表明,2011-2017年期间京津冀地区NOx污染状况得到明显改善,但各个城市的改善程度存在差异,其中北京、唐山NO2柱浓度降幅明显低于污染核心高值区的其他城市,在下一阶段制订治理方案时应重点考虑.  相似文献   

4.
温度是影响臭氧生成的关键气象因子,通常情况下,臭氧和温度呈显著正相关关系,即臭氧浓度随着温度的升高而上升.然而这种关系在极高温时可能发生改变,当温度超过某个阈值时,臭氧浓度呈下降趋势,称为臭氧抑制事件.臭氧抑制事件导致气候变化背景下未来空气质量预测具有更多不确定性.基于全国空气质量监测数据和气象观测数据,采用Z检验方法,系统分析了2013~2020年暖季(4~9月)我国臭氧抑制事件频次及临界温度(Tx)的时空特征,并分析了引起臭氧抑制事件发生的可能影响因素.结果表明,2013~2020年暖季,我国约有18%的站点发生臭氧抑制事件,发生频率较高的站点主要分布在四川、新疆、陕西等中国中西部地区,平均达到10次·a-1.发生臭氧抑制事件的Tx介于19.2~39.3℃,且大多数站点的Tx呈逐年上升趋势;Tx高值区主要分布在四川、重庆、湖南和湖北等中西部地区,而Tx低值区则集中在青藏高原一带.与Tx年变化趋势相反,2013~2020年暖季京津冀的臭氧抑制事件频率显著下降,汾渭平原、长三角和成渝地区的臭氧抑制事件频率呈"升高-降低-升高"变化特征.珠三角城市群极端高温抑制臭氧的作用最显著.此外,臭氧前体物(例如NO2)和气象条件(风速、风向)是导致臭氧抑制事件的可能原因.  相似文献   

5.
利用Williams等和Guenther等的模型估计中国地区NOx和VOC的自然源排放.所得清单显示土壤NOx排放总量(以N计)为225.75 Gg;植被VOC年排放总量(以C计)为13.23 Tg,其中异戊二烯、单萜烯、其它VOC分别为7.77、1.86、3.60 Tg;排放有明显季节变化和空间变化.运用中尺度气象模式MM5以及光化学模式Calgrid研究这些排放在不同季节对对流层化学的影响.结果表明,O3、NOx、HNO3和PAN的全国平均浓度在土壤NOx排放影响下分别增加15.3%、15.7%、25.5%和6.5%;在植被VOC排放影响下改变5.6%、-4.9%、-19.3%和142.3%;在两者综合影响下增加26.1%、8.8%、4.3%和177.9%;浓度变化在夏季明显强于其它季节.自然源对中国地区光化学污染物空间分布有不同程度的影响,这种影响同区域气象条件、源排放和NMHC/NOx比值等因素有关.NOx和VOC的自然源排放对光化学特性影响显著,在光化学模拟过程中不容忽视.  相似文献   

6.
中国水泥排放清单及分布特征   总被引:2,自引:1,他引:1       下载免费PDF全文
本研究基于2018年在线监测数据等,分析中国水泥行业主要工序(窑头和窑尾)排口烟气浓度情况,自下而上建立了2018年中国高时空分辨率水泥行业大气污染物排放清单(high resolution cement emission inventory for China,HCEC).结果表明,2018年中国水泥行业的PM、SO2和NOx排放量分别为72893、92568和878394 t.从时间维度:2018年中国水泥行业主要工序烟气排口月均浓度逐步降低,蓝天保卫战成效显著.从区域维度:2018年京津冀及周边地区、长三角地区和汾渭平原,水泥窑年均排放浓度整体低于全国平均水平,但各城市排放浓度存在差异.2018年安徽省水泥行业排放量最大,北京市和天津市水泥行业的单位面积污染排放强度最大.  相似文献   

7.
远程在线监控车载终端集成了远程通讯模块、卫星定位模块、发动机OBD信息解析模块,能够实时读取车辆排放相关运行信息,但无法直接判断车辆NOx排放情况.为了快速、准确地评估车辆排放情况,诊断和监测NOx高排放车,同时为了克服有些重型柴油车监测数据中缺失进气流量、燃油流量、车速等重要的实时信息,无法计算出车辆NOx排放因子的问题.本文提出了由NOx浓度分布特征驱动的高排放重型柴油车识别算法,通过远程在线监控车载终端设备获取车辆的发动机信息和SCR系统运行信息,运用NOx浓度分布计算车辆每天NOx排放浓度占比,通过系统聚类法对车辆NOx排放浓度占比进行聚类,结果聚为优、良、中、差4类.利用车辆NOx排放浓度区间分布及其聚类结果分别作为训练集的输入和输出,选择BP神经网络作为训练算法,训练获得的模型分类准确率为90%,利用训练好的模型判断在用柴油车NOx排放等级,从而识别及监测NOx高排放车辆.研究结果可为柴油车NOx高排放诊断及监测提供依据,有助于监管部门能够快速识别NOx高排放车辆.  相似文献   

8.
以2019年3—4月臭氧(O3)污染小高峰为例,应用空气质量模型CAMx-DDM法分析了成渝地区O3浓度对人为源前体物排放敏感性,并用2020年"新冠"疫情防控及生产恢复导致的污染排放同比变化情景进行模拟验证.模拟结果表明成渝地区O3对NOx的敏感性为负、对VOCs的敏感性为正,其中,重庆市主城区、主城区以西地区、川南城市群和成都平原西部地区敏感性较高,与其自身污染排放源分布密集有关.以典型城市重庆市主城区为例,2019年3—4月O3小时浓度对NOx和VOCs的敏感性平均值分别为-19.14 μg·m-3和7.25 μg·m-3,两者表现出相反的日变化规律,且主要受到本地及周边区域的影响,模拟结果显示在所有区域VOCs排放均削减25%的情况下,3月和4月月均O3日最大8 h浓度分别下降2.62 μg·m-3和3.59 μg·m-3.敏感性模拟得到2020年3月四川省和重庆市NOx排放量同比下降8.00%和22.40%,VOCs同比下降1.00%和7.92%;4月NOx排放量同比上升5.00%和9.50%,四川省VOCs同比持平,重庆市上升3.63%,与同期"新冠"疫情防控及生产恢复导致的实际排放情况非常一致.  相似文献   

9.
以PM2.5和O3浓度超标为表征的区域性大气复合污染已成为当前我国大气污染的主要问题,严重影响到经济的发展和社会的和谐,探究PM2.5与O3的协同控制近年来成为大气污染防控的热点.本文基于WRF-Chem模式,结合气象、大气污染物观测数据及MEIC排放清单等数据,依据不同比例的NOx和VOCs减排量,设计了36组减排情景,模拟了长三角地区PM2.5和O3复合污染时段的空气质量状况.同时,利用综合经验动力学(CEKMA)方法,综合考虑NOx和VOCs减排的边际效益成本和环境健康效益,评估了长三角地区NOx及VOCs减排对PM2.5和O3大气污染控制的影响.最后,定性并定量地研究两者的协同关系及协同减排效果,给出了该区域在复合污染情景下的先侧重VOCs、后侧重NOx减排的协同优化路径,采取先减少NOx排放约70%(或60%)且减少VOCs排放约10%(或20%),再削减剩余VOCs及NOx排放量的方案,减排的环境空气质量改善效率可以分别达到最优路径的90%(或80%)以上,而等比例同时减排NOx和VOCs对区域空气质量的改善反而是效果不佳的 减排方案之一.研究方法和结论对区域大气环境的综合治理具有重要的应用价值,对我国其他地区的大气污染防治及相关研究也具有借鉴意义.  相似文献   

10.
基于WRF-CMAQ空气质量模型,采用开关污染源排放的敏感性试验方法,定量分析了淮海经济区核心区污染排放对京津冀区域、"2+26 "大气污染传输通道城市、汾渭平原地区和长三角区域PM2.5的贡献.结果表明,对京津冀区域,污染贡献比例最大值出现在10月份,同时对不同城市的贡献值在10%以内变化;对" 2+26"大气传输通道城市,影响的时空差异变化明显,其中对聊城市、菏泽市和济南市的贡献值均超过了10%;对汾渭平原地区的贡献总体较弱,最大贡献值低于5%;对长三角区域,贡献值在不同城市间的时空差异变化明显.考虑到淮海经济区地处京津冀和长三角过渡地带,且对京津冀和长三角区域PM2.5影响较大,建议尽快将淮海经济区核心地区纳入国家大气污染重点控制区.  相似文献   

11.
利用"Nudging"源同化技术反演了京津冀地区2014年1、3、7、11月SO_2、NO_x的局地动态污染源,并分析其排放源强、特征及地理分布,对比其与初始源的差异,同时检验了反演源的模拟效果.结果表明,SO_2、NO_x污染源存在明显的季节变化,冬季或采暖期排放强度最大.由唐山、北京、天津、廊坊、保定、石家庄、邢台、邯郸构成东北-西南走向的带状污染物高排放区,最高排放中心主要集中在太行山、燕山山前区域,且排放具有典型的"城市化"特征,即各个城市市区及附近强度最大,周边郊县稍弱.与初始源模拟结果相比,采用反演源更能反映出污染物的时空变化特征,模拟值与实测值较接近,而且对于重污染过程亦具有较好的模拟效果.  相似文献   

12.
利用OMI遥感数据研究中国区域大气NO_2   总被引:6,自引:4,他引:6  
肖钟湧  江洪  程苗苗 《环境科学学报》2011,31(10):2080-2090
利用臭氧观测仪(Ozone Monitoring Instrument,OMI)卫星遥感反演的NO2柱浓度数据,分析了自2004年以来中国地区对流层NO2柱浓度(TroNO2)和总NO2柱浓度(TotNO2)的时空特征及其影响的原因.中国区域平均TroNO2和TotNO2呈现上升的趋势,年平均分别增长了4.67%和2....  相似文献   

13.
城市尺度高分辨率人为源大气污染物排放清单是城市空气质量预报预警、污染成因分析和减排措施制定的重要基础数据,目前我国西部地区城市尺度的人为源排放清单研究仍然相对薄弱,能对接于空气质量模式的排放清单更为缺乏.本文整合已发表的清单文献,建立了可对接于空气质量模式的2016年兰州市城市尺度的人为源清单模型(HEI-LZ16),将之应用于WRF-Chem模式,评估HEI-LZ16的准确性和适用性.结果表明:兰州市2016年人为源排放的SO2、NOx、CO、NH3、VOCs、PM10、PM2.5、BC和OC总量分别为25642、53998、319003、10475、35289、49250、19822、2476和1482 t·a-1.在模拟时间内,HEI-LZ16相比于MEIC,O3和PM2.5的NME值分别减小了140.2%和28.8%,HEI-LZ16更加准确适用.分析了HEI-LZ16情景下模拟的PM2.5和O3时空分布,兰州市臭氧MDA8呈现冬春季城区低而郊区高,夏秋季河谷城区西部及其下风向地区高的分布特征,夏秋季高浓度区的分布受偏东风和光化学反应的共同影响,冬季城区O3浓度受NOx排放的抑制作用浓度反而降低.PM2.5浓度的高值区主要集中在黄河河谷盆地,本研究表明沿白银—兰州黄河河谷盆地走向的西侧存在一个污染物传输通道,其对兰州市环境空气质量具有较大的影响.  相似文献   

14.
基于OMI卫星数据和MODIS土地覆盖分类产品,研究了珠江三角洲地区2005—2016年不同土地利用类型臭氧敏感性的时空变化特征.结果表明,采用MODIS数据产品建立的土地利用类型(发达区、较发达区和欠发达区)具有一定的科学性和适用性.臭氧生成受到VOCs控制的地区主要集中在珠三角中部,包括广州南部、佛山、中山、深圳和江门的部分地区,其面积占比不断缩小,在2015年达到最低值5.05%,2016年有所回升.受到NO_x控制的地区主要分布在珠三角边缘地带,包括惠州东北部、广州北部、肇庆西北部和江门西南部,其面积不断增大,在2016年达到最大面积占比42.60%.协同控制区集中在这两种控制区之间.分析不同土地利用类型的敏感性,结果发现,发达区主要为VOCs/协同控制区,较发达区主要为协同控制区,欠发达区为NO_x控制区.根据不同城市臭氧控制区面积占比的年际变化,可将珠三角9个城市分为3类:第1类以广州为代表,其面积较大,土地利用类型丰富,3种臭氧控制区均有出现;第2类以深圳为代表,集中在珠三角中心区,仅有VOCs控制/协同控制两种控制区;第3类只有惠州,仅有NO_x/协同控制两种控制区.  相似文献   

15.
2015—2016年中国城市臭氧浓度时空变化规律研究   总被引:4,自引:3,他引:1  
为探究中国大陆城市O3污染状况时空变化的总体特征,运用时空统计分析和GIS技术对2015—2016年全国开展O3常规监测的336个城市进行分析,揭示近两年O3浓度及不同等级污染天数的时空变化格局,并着重对比分析"三区十群"区域内外O3浓度的变化差异.结果表明:2015—2016年期间,全国336个城市中,有258个城市2016年年均O3浓度值较2015年升高,形成了新的O3污染空间格局;京津冀及周边地区、长三角地区、中部的河南、武汉污染较重,东南沿海和西南地区的云南、西藏污染相对较轻;长三角地区和山东城市群是中国O3核心污染区域,陕西、山西及安徽三省O3浓度较2015年有大幅升高.O3的空间分布与NOx排放量、生成控制型等因素密切相关.已有的研究区域中除华北平原和四川盆地等地区的郊区点位以外,我国大多数地区的O3生成控制型属于VOCs控制型.研究结果有利于从宏观上直接对比评估国家大气污染重点防控区内外O3污染特征变化的差异,从而针对性地开展环境污染防控.  相似文献   

16.
采用CMAQ模式和自适应偏最小二乘回归法相结合的动力-统计预报方法,对2014年1—12月全国252个环境监测站的PM_(2.5)浓度逐时预报值进行了滚动订正,分析了订正前后PM_(2.5)浓度的时空变化特征,重点研究该方法在中国不同地区不同季节的适用性.结果表明:CMAQ模式预报的PM_(2.5)浓度年平均和秋冬季季节平均偏差表现为非均匀空间分布特征,即辽宁、山东部分地区、川渝地区及华中、华东、华南大部分地区预报偏高,京津冀和西部大部分地区预报偏低;订正后PM_(2.5)浓度与实测值的空间分布较一致,上述偏高和偏低地区的PM_(2.5)浓度预报误差显著减小;秋冬季PM_(2.5)浓度预报和订正偏差均大于年平均值.全国区域平均PM_(2.5)浓度实测值存在明显的季节变化特征,1—3月和11—12月较大,其他月份较小;PM_(2.5)浓度预报误差较大,多数时刻预报偏低,尤其是1—3月和11—12月偏低较明显;订正后PM_(2.5)浓度与实测值较接近,而且时间变化趋势较一致,秋冬季PM_(2.5)浓度预报和订正偏差亦明显大于春夏季.秋冬季4个重点污染区域中,京津冀地区PM_(2.5)实测浓度的区域平均值较大,川渝地区次之,长三角和珠三角地区较小;珠三角地区PM_(2.5)浓度预报和订正效果较好,川渝和长三角地区次之,京津冀地区相对较差;经滚动订正后,全年和秋冬季时段PM_(2.5)浓度订正值与实测值的相关系数均显著增加,误差显著减小,尤其是秋冬季订正效果较好.川渝地区的订正改进幅度最大,长三角和京津冀地区次之,珠三角地区较小.本文方法均适用于非污染日和污染日全国范围的PM_(2.5)预报浓度订正,两种天气过程PM_(2.5)浓度的订正效果均较好;该方法对于改进京津冀地区污染日的PM_(2.5)浓度预报更有效,其他3个地区非污染日的订正改进效果优于污染日.本文研究结果可为改进空气质量预报、重霾污染天气预警和防治提供新技术途径和科学依据.  相似文献   

17.
李睿  魏巍  王兴锋  王晓琦  程水源 《环境科学》2023,44(10):5400-5409
近年来京津冀区域夏季臭氧(O3)体积分数仍居高位,轻中度污染频繁发生,相关反应机制研究亟需开展.利用WRF-Chem模式对该区域2018年夏季代表月O3浓度进行模拟,并基于Brute-Force方法探究了区域层面前体物减排的O3变化.O3在不同排放情景的变化表明,该区域O3反应机制以VOCs控制区与非敏感区为主,VOCs控制区主要聚集京津冀中部,呈南北带状分布,面积占比15.60%~26.59%.区域各市城区的O3浓度对前体物排放的相对响应强度(RRI)具有很大的空间差异性,对于VOCs,RRI_VOC在0.03~0.16范围内;而对于NOx,RRI_NOx在-0.40~0.03范围内.纬度越高的城区,RRI值越剧烈,表明了越为显著的区域输送影响.前体物排放强度高的城区,RRI_NOx值越低,暗示RRI_NOx对当地NO2浓度的负向依赖;但RRI_VOC与NO2水平无明显关联,更依赖于对前体物相对丰度(VOCs :NOx).RRI_VOC与RRI_NOx比值在多数城市表现为负值,VOCs协同减排以抑制O3浓度恶化十分必要;该比值的绝对值在工业化和城市化高的城市远低于普通中小城市,意味着这些城市VOCs协同减排的要求将更高.然而,即使在前体物50%减排下,区域各城市O3浓度改善仍然有限,毗邻省份的区域外联合治理也依然重要.  相似文献   

18.
The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 ± 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 ± 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 ± 0.02) g/km and (0.38 ± 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 ± 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.  相似文献   

19.
Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone(O3), NO2and total oxidant(Ox) were analyzed by both linear regression and cluster analysis. A fast increase of regional O3concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O3increase is accompanied by a correspondingly fast NOx reduction as indicated by a fast NO2 reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories – rural stations(non-urban) and suburban/urban stations. The O3concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime(13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O3production is mainly volatile organic compounds(VOC)-controlled. However, the photochemical O3production is sensitive to both NOx and VOC for O3pollution episode. Accordingly, it is expected that a combined NOx and VOC reduction will be helpful for the reduction of the O3 pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O3 pollution control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号