首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
银川市臭氧污染特征及影响因素分析   总被引:2,自引:2,他引:0  
依据2014年银川市6个自动空气监测子站的监测数据,分析银川市臭氧浓度的污染特征,并对夏季臭氧相关气象因子进行分析。结果表明,从监测点位来看,银湖巷站点臭氧浓度最高,宁安大街次之,宁化生活区臭氧浓度最低。从时间变化规律来看,银川市臭氧浓度呈夏季最高,春季次之,秋季、冬季污染较低,其中臭氧月均浓度最大值出现在5月、6月。臭氧日变化呈单峰变化规律,夜间臭氧浓度较低,白天臭氧浓度较高。夏季臭氧浓度与二氧化氮、相对湿度呈显著的负相关性,与气温、风速呈显著正相关性。  相似文献   

2.
利用2013-2015年大气质量监测数据,分析了成渝地区臭氧污染年变化、季节变化和日变化特征。结果发现,成渝地区臭氧污染已成为全国除了京津冀、长三角、珠三角地区外的另一个高发区域,特别是成都地区,臭氧污染加剧。成渝地区臭氧浓度在12:00-19:00出现高值,常年臭氧浓度夏季春季秋季冬季。臭氧的产生主要来源于汽车尾气和工业废气中NO_x和VOC光学反应产生的二次污染物。成渝地区的高热、静风天气有利于臭氧的形成。  相似文献   

3.
利用差分吸收臭氧激光雷达、多普勒风廓线激光雷达,研究了2019年11月在广东珠海出现的一次典型臭氧污染过程前后期的时空分布特征,以及水平风向风速及垂直风速对近地面与边界层上部臭氧浓度变化的影响.结果表明:2019年11月13日的臭氧污染以低风速条件下 臭氧局地生成为主;2019年11月14日的臭氧污染以夜间残留悬空臭氧向下输送叠加地面生成为主.入夜后若近地面水平风速较小,则不利于近地面臭氧清除,地面臭氧浓度下降缓慢.若夜间边界层内存在上升气流,则有利于悬空臭氧残留的维持;若日间边界层内出现下沉气流, 则会导致残留悬空臭氧沉降,进而与新生成的臭氧叠加,加剧地面臭氧污染.污染过程中,若水平风速上升,边界层上部臭氧浓度下降不如 低层明显;若水平风速下降,边界层上部臭氧浓度上升响应也较为迟缓.  相似文献   

4.
2015年8月27日-9月2日重庆市经历了一次臭氧污染天气,通过分析发现,3个在线站污染时段臭氧平均浓度是清洁时段的1倍左右,浓度峰值有明显升高且日变化更加明显.通过分析3个在线站NO2、O3和总氧化剂Ox的浓度发现,南泉站与超级站的臭氧可能是局地化学过程生成与区域传输的共同作用,而缙云山站的臭氧则主要来自区域传输.利用观测值与基于观测的模型结果来分析,发现清晨时重庆市上空边界层以上残留的臭氧向下传输,导致07:00-09:00重庆近地面臭氧浓度的小幅度上升,同时由于近地面风速风向的变化,会导致各站臭氧的输入输出关系发生变化,且该次污染过程中3个在线站之间存在臭氧传输的现象.  相似文献   

5.
上海市中心城区低空大气臭氧污染特征和变化状况   总被引:3,自引:0,他引:3  
对2005年1月~12月上海闸北地区地面空气臭氧污染浓度连续监测结果分析,表明臭氧小时浓度均值超过GB3095-1996<环境空气质量标准>二级标准160μg/m3的频率为2.88%,其中6月份超标率居全年之首,1月、2月和12月超标率为零.臭氧浓度日变化规律表明,日最大值出现在12时~14时之间,具有受污染地区光化学过程臭氧生成的典型日变化特征.臭氧浓度日振幅6月最大,2月最小.5月份臭氧月均浓度91μg/m3全年最高,最高小时均值浓度350μg/m3出现在5月19日,说明上海中心城区空气中臭氧生成可能受到前体污染物的浓度影响更大.太阳紫外辐射、气温、风速、风向、相对湿度、降水等气象因素的变化对O3变化的影响分析,在高温晴朗的天气中观察到NO2/NO比值与O3成显著线性关系.  相似文献   

6.
近年来,青岛市夏季臭氧(O_3)污染逐渐严重,深入分析青岛的O_3变化特征和重污染形成机理对该地区大气污染防治具有重要意义.本文基于青岛大气监测站2017年6月1—20日的O_3小时浓度数据,分析了发生在青岛沿海地区的一次持续O_3重污染过程的特征,并利用数值模式进行成因分析.结果表明,本次污染过程10个监测站日最大8 h平均臭氧浓度超标率达到30%~45%,超标倍数为0.20~0.51,单站小时浓度峰值可达390μg·m~(-3).同时,利用WRF-CMAQ模型对O_3重污染过程进行了数值模拟、过程分析和敏感性试验.结果表明,WRF-CMAQ具有模拟臭氧重污染的能力,6月8—9日、15—16日O_3重污染主要是外部输送导致,可能的机制是上游高空的高浓度O_3沿气团轨迹传输,随下沉气流聚集在青岛西南部海面,随后由近地层西南向海风水平输送至青岛沿岸,而6月17日O_3重污染产生的首要因素是局地光化学生成.本次臭氧污染期间,青岛大部分时间都处于前体物非敏感区,且覆盖范围广.2017年6月1—20日青岛沿海地区的臭氧污染事件大部分归因于区域传输,因此,应该加强区域联防联控,减少区域传输对城市臭氧浓度的影响.  相似文献   

7.
利用2008年7月-2009年6月烟台市11个子站的大气臭氧自动连续监测数据,时臭氧浓度的区域分布、季节变化、日变化、与二氧化氮浓度相关性等特征进行分析.结果表明:①郊区臭氧浓度高于市中心区;②臭氧浓度季节变化明显,其大小依次排排列为春季、夏季、秋季和冬季;③臭氧浓度具有明显的日变化,一般在午后浓度较高。夜晚较低,早晨...  相似文献   

8.
为研究上海春季近地面臭氧污染的区域性特征,对长三角地区55个城市国控站点及上海市54个城市监测站点2016年5月的臭氧监测网络数据进行主成分分析(Principal Component Analysis,PCA),并将分析结果与气象条件进行综合分析,结果表明,主成分分析在不同的空间尺度下可以解析出行为模式不同的臭氧生成及传输来源主成分,且在较大的空间尺度下可以解析出区域背景臭氧浓度.长三角地区春季区域臭氧特征复杂,存在9个主成分,第一主成分所能解释的背景臭氧浓度在68.8~154.7μg·m~(-3)之间,而上海市主成分解析结果较为集中,仅能解析出两个主成分,且第一主成分即可解释90.5%的臭氧.对比同时段长三角及上海市主成分分析解析结果,上海市春季臭氧污染主要受到来自海洋的东南风影响,高浓度臭氧污染的本地生成贡献显著.  相似文献   

9.
近年来大气臭氧污染问题凸显,但臭氧前体物及其效应复杂,控制难度大.为探究徐州市臭氧污染特征,掌握臭氧前体物的作用机理,实现多种前体物协同优化控制,本研究基于国控点、省控站点、网格点2018—2021年及2022年4—6月的多要素监测数据进行了全面剖析及减排效应模拟.结果表明:(1)徐州市复合污染变化特征表现为PM2.5波动下降,臭氧污染整体逐年加重的趋势,臭氧作为首要污染物出现时间提前、时间持续变长,以臭氧为首要污染物的超标天数已超过PM2.5;(2)根据臭氧小时变化特征,其日变化呈“单峰型”,臭氧2022年6月峰值时间较2018—2021年6月推后1 h,不同臭氧浓度下源排放强度和光化学反应对臭氧的影响显著,高温时臭氧前体物VOCs浓度明显高于平均值;(3)基于观测的模型(Observation-Based Model, OBM)模拟结果显示,单独减排NOx或VOCs降低臭氧污染难度较大,在徐州地区VOCs与NOx的削减比例不低于1.8∶1才能达到臭氧前体物协同控制的效果;(4)在当前VOCs来源...  相似文献   

10.
对昆明市2014—2018年空气质量和臭氧(O3)污染特征进行了分析,并结合臭氧污染观测资料和气象条件,对昆明市臭氧浓度与气象因子相关性进行了初步研究。结果表明:昆明市空气质量总体逐渐变好,臭氧浓度整体呈上升趋势,春季和夏季臭氧污染比较明显;臭氧浓度春季高,秋冬季低,高值主要集中在3—5月;臭氧污染主要出现在3—8月,7月最高;臭氧浓度与太阳辐射、气温、大气低层温度垂直分布、风速等总体呈正相关,与气压、相对湿度总体呈负相关。  相似文献   

11.
青岛市夏季臭氧浓度水平高且污染事件频发,开展臭氧污染过程和非污染时期的挥发性有机物(VOCs)及其臭氧生成潜势(OFP)的精细化来源解析研究,对于有效降低沿海城市的大气臭氧污染,持续改善环境空气质量将会发挥重要的作用.因此,利用青岛市2020年夏季(6~8月)小时分辨率的在线VOCs监测数据,分析臭氧污染过程和非臭氧污染时期环境VOCs的化学特征,并通过正定矩阵因子分解(PMF)模型进行了环境VOCs及其OFP的精细化来源解析研究.结果表明,青岛市夏季环境ρ(TVOCs)平均值为93.8μg·m-3,臭氧污染过程相较于非臭氧污染时期TVOCs浓度上升了49.3%,其中芳香烃浓度增加最显著,增加了59.7%.夏季环境VOCs总的OFP达到246.3μg·m-3,臭氧污染过程相较于非臭氧污染时期环境VOCs的总OFP增加了43.1%;其中烷烃增加最多,增加了58.8%.间-乙基甲苯和2,3-二甲基戊烷是臭氧污染过程中OFP增加幅度最大的物种.青岛市夏季环境VOCs的主要贡献源为柴油车(11.2%)、溶剂使用(4.7%)、液化石油气及天然气(27....  相似文献   

12.
利用远安县城区环境空气质量自动监测站2017-2018年的监测数据,对空气中臭氧(O_3)的污染特征进行了分析。分析结果表明:远安县城区空气中臭氧作为首要污染物的占比有逐年增加的趋势。臭氧浓度具有明显的日变化、月变化和季节变化规律,日变化呈单峰型且高峰段在13:00—18:00;月变化规律显示6月—10月浓度最高;季节变化规律显示夏季浓度最高,冬季浓度最低。  相似文献   

13.
杭州市臭氧污染特征及影响因素分析   总被引:5,自引:0,他引:5  
为研究杭州市夏季臭氧(O_3)污染特征及其影响因素,统计分析了2013—2016年杭州市O_3监测数据与杭州市气象数据,并结合AIRS卫星O_3数据探讨了台风天气系统对杭州市近地面O_3浓度的影响.结果表明:2013—2016年,杭州市O_3污染逐年加重,O_3浓度高值持续时间延长.O_3浓度与太阳辐射、温度相关,每年5月和8月太阳辐射强、温度高,O_3污染最严重;全天O_3浓度呈单峰日变化,峰值出现在午后(~14:00)太阳辐射较强、温度最高时.杭州市在日降水为0且12:00—15:00太阳辐射通量均值高于200 W·m~(-2)天气条件下,风向为东、东北或东南风且风速低于3 m·s~(-1)时,O_3浓度相对较高,易出现超标情况.台风天气系统对杭州市近地面O_3浓度有明显影响,以2014年10号台风"麦德姆"为例,台风外围系统影响到杭州时,偏东气流可将杭州以东地区高浓度O_3输送到杭州,同时下沉气流导致污染物在近地层积聚不易扩散,造成近地层O_3浓度升高.  相似文献   

14.
上海市中心城区低空大气臭氧污染特征和变化状况   总被引:2,自引:0,他引:2  
通过上海市中心城区空气质量自动监测点的监测数据,对2005年1~12月上海闸北地区低空(距地面约25m)大气臭氧(O3)污染浓度的连续监测结果进行了分析.结果表明,臭氧小时浓度均值超过GB3095-1996((环境空气质量标准》中二级标准(160pg/m^3)的频率为2.88%,其中6月份超标率居全年之首,1、2.12三个月超标率为零。臭氧浓度日变化规律表明,日最大值出现在12:00~14:00之间,具有受污染地区光化学过程臭氧生成的典型日变化特征。臭氧浓度日振幅6月最大,2月最小。5月份臭氧月均浓度91ug/m^3,为全年最高;最高小时均值浓度3501Jg/m^3出现在5月19日,说明上海中心城区空气中臭氧生成可能受到前体污染物的浓度影响更大。同时,分析了太阳紫外辐射、气温、风速、风向、相对湿度、降水等气象因素的变化对O3变化的影响,在高温晴朗的天气中观察到NO2/NO比值与O3成显著线性关系。  相似文献   

15.
文章应用WRF-CHEM模式模拟分析了东南沿海地区2017年4月28日-5月1日的天气变化过程以及大气污染过程,并以东南沿海地区福建省泉州市为研究区域定量分析了春季外来输送对泉州市臭氧浓度贡献。模式准确地模拟了泉州大气臭氧的时间变化趋势以及我国东部以及东南沿海地区的臭氧空间分布状况,较好地再现了天气形势以及大气臭氧污染的演变过程。在春季研究时段内,来自华北及长江三角洲长距离输送的污染物与本地排放相互作用,在局地海陆风作用下造成东南沿海地区的臭氧污染。定量研究结果表明在东南沿海地区发生高臭氧污染时,外来输送对泉州市区臭氧污染贡献约占38%。  相似文献   

16.
莆田地区一次臭氧污染过程分析   总被引:1,自引:0,他引:1  
利用2018年7月28日—8月5日莆田地区4个环境监测站臭氧逐小时浓度观测资料、莆田国家气象站逐小时资料、莆田地区风廓线雷达站逐小时资料对7月29日—8月4日的臭氧污染过程进行分析.结果表明,除7月30日臭氧最大浓度为193 μg·m-3外,其余日期莆田市监测站的臭氧浓度小时最大值均超过200 μg·m-3.本次污染过程在气象条件上臭氧浓度与温度呈正相关,与湿度呈负相关,臭氧浓度与两者的相关系数绝对值均大于0.77.边界层上的偏西风和西南风在此次过程中表现出有利于本地区臭氧污染的形成和维持.结合污染物排放资料和后向轨迹分析表明,污染主要成因以外来源输送为主,后向轨迹经过漳州、泉州排放区,本地区排放对污染的贡献较少.莆田市监测站的NOx与O3浓度呈正相关的特殊现象是海陆风和山谷风配合地形造成的O3和NOx共同堆积和扩散所导致的.  相似文献   

17.
对2019年昆明市官渡区环境空气中臭氧监测数据进行分析,研究昆明市官渡区的臭氧(O3)污染情况、分布特征以及与影响因子的相关性。结果表明,该地区臭氧从3月份开始逐步升高,7—10月维持高位,其中8月达到峰值。O3浓度和超标天数均具有明显的季节变化特征,春季和夏季的O3污染最为严重。对臭氧浓度与影响因子(气压、气温、相对湿度、风速、降水量、NO2、NO、PM10、CO、PM2. 5)进行相关性分析,结果显示臭氧浓度与气温的相关性呈现中等程度正相关,与相对湿度、风速的相关性呈现较强的负相关性,NO2、PM10等会影响近地面臭氧浓度,但相关性较低。影响因子对臭氧浓度的作用不受海拔高度的影响。  相似文献   

18.
目的 了解安徽省臭氧时空分布特征及其与气象要素的关系.方法 利用2017—2019年环境空气质量监测的臭氧数据和气象观测数据,并结合后向轨迹模型和潜在源区分析,分别评价安徽省臭氧污染区域分布和气象要素对臭氧浓度的影响,并分析区域传输对安徽省臭氧浓度的影响.结果 2017—2019年安徽省及各市臭氧浓度增长显著,2019年同比2017年增幅为12.2%,第二季度(4、5、6月)和第三季度(7、8、9月)是O3浓度相对较高的时期,且O3污染有"前移后滞"趋势.污染气团主要来自于安徽省内部地区,潜在源分布显示,皖中地区(合肥、安庆、马鞍山等城市)的贡献比例最大,外地源贡献主要来源于江苏省和山东省等.臭氧浓度与温度和太阳总辐射强度呈正相关,与降水量和相对湿度呈负相关,与风速关联性不大.结论 安徽省臭氧污染逐年增加的主要原因是本地排放的加剧,外源输送可能会产生一定影响,加之高温和强太阳辐射的影响,会加剧臭氧污染的程度,并导致重污染.  相似文献   

19.
结合WRF数值模式与气象、污染物观测资料,综合分析了北京市2013年6月29日-7月2日夏季一次空气重污染过程的特征、气象条件及成因。结果表明:重污染过程期间6月30日-7月1日细颗粒物平均浓度为184μg/m~3,平均风速为2.07 m/s,平均相对湿度为87.25%;24 h变温基本在-0.83~3.81℃之间,24 h平均变压在-3.59~-0.18 h Pa之间;北京及周边地区不利的气象条件是重污染形成的主要原因,局地累积及本地化学反应、周边地区秸秆焚烧输送又加剧了此次空气重污染的程度,形成了此次夏季罕见的重污染过程。  相似文献   

20.
利用WRF-Chem模式对2014年10月27日珠江三角洲一次高浓度PM_(2.5)与O_3复合污染过程的特征和形成机理进行数值模拟研究.污染发生时,珠三角受中高层高压脊和低层高压系统搭配形成的静稳天气控制,扩散条件不利.在地面偏东风影响下,主要的污染区域为珠三角西部地区(包括肇庆南部、佛山以及江门北部).数值模式的结果表明,肇庆南部和江门北部的高臭氧浓度源自气相化学过程,佛山的高臭氧浓度则来源于物理过程.高臭氧浓度区属于VOCs控制区,中心城区输送的人为源VOCs和江门本地排放的生物源VOCs促进了臭氧生成.高PM_(2.5)浓度是由较高的起始浓度加上SO_2和NO_2的高转化率使二次无机盐大量生成造成的,其中硫酸盐浓度的增长主要来自局地生成,而硝酸盐浓度的升高则受区域输送影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号