首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用2017~2019年晋城市和长治市冬季PM2.5逐时浓度资料、地面风场数据等,结合HYSPLIT轨迹模型和中尺度数值模式WRFV4.2分析了晋东南地区冬季PM2.5污染的特征和传输特点.结果表明,晋城市冬季PM2.5污染程度高于长治市.受地形影响,晋城市地面盛行偏南风、偏北风和西北风,污染方向主要为偏南风和偏北风;长治市近地面盛行偏南风,该风向污染频率最高.影响晋城市和长治市污染的潜在源区主要分布在偏西、东北和东南方向,偏西气流来自陕西省中部,东北气流来自河北省西南部,东南气流来自河南省中东部.污染经过晋东南地区主要影响山西省中南部和北京南部.通过数值模拟流场,结合潜在源区和影响区域的分析结果,在均压场或高压后部的天气形势下,晋东南地区污染输送路径包括来自东北方向(河北省西南部一带)的气流,沿长治市东北部的滏口陉向晋东南地区输送污染物及沿太行山东麓向南在晋豫交界处的太行陉发生转折向晋东南地区输送污染物;来自东南方向(河南北部及东部)的气流输送和来自偏西方向(陕西中南部)的气流输送.污染物经过晋东南地区向北输送至山西省中南部,部分经过山西省中东部的井陉输送至北京南部.  相似文献   

2.
运用NCEP的GDAS全球气象要素资料与HYSPLIT后向轨迹模式,计算广州地区2010~2012年逐日72h后向轨迹,利用聚类分析方法,分析了广州地区污染物输送通道垂直特征, 计算不同输送通道下广州市颗粒物浓度日均值,同时分析污染物在输送过程中跨越边界层的特征.结果表明:广州地区近地面污染物输送通道可以分为局地、东北路、北路、西北路、东路、南路,不同输送路径对应的PM2.5浓度存在显著差异.局地与东北路输送时,PM2.5浓度最大,北路次之,东路较小,南路输送时最小.西北路输送时,PM10中粗粒子比重明显增加.影响广州地区主要为湖南东南部、江西中部及东南沿海,超过1000m高度的轨迹数所占百分比为16.1%,而低于500m高度的轨迹数所占百分比为 73.1%,近地面污染物的输送主要发生在边界层内部.  相似文献   

3.
长江三角洲地区大气污染物输送规律研究   总被引:36,自引:8,他引:28  
王艳  柴发合  王永红  刘敏 《环境科学》2008,29(5):1430-1435
采用NCEP全球再分析资料运行MM5获得研究区域2004年代表月份的气象场模拟结果,运用HYSPLIT4.8模式,计算代表城市的后向及前向气流轨迹.结果表明,不同季节,气流轨迹的分布差异明显,影响范围各不相同.影响长三角地区低层大气的输送气流主要来源于蒙古、华北或东北地区,途径黄海海域或东部沿海的山东、江苏或上海等地抵达长三角地区.受夏季西南季风的影响,西南方向也是比较重要的输送途径.长江三角洲地区对外界的中尺度污染传输主要受东亚季风活动的影响,其中冬季季风是长三角污染物向华南和西太平洋地区传输的一个主要机制;影响长三角污染物输送的重要系统还包括春夏控制我国东部沿海地区的西太平洋副热带反气旋环流,该系统主要向西影响我国内陆地区.  相似文献   

4.
珠江三角洲地区2006年颗粒物污染过程识别与分析   总被引:3,自引:1,他引:2  
利用Matlab小波分析工具,分析了珠三角(珠江三角洲)地区2006年PM10的突变特征,并对典型区域性颗粒物空气污染过程进行了识别.结合全球资料同化系统(GDAS)气象数据,运用HYSPLIT v4.9模式,以4个典型空气观测站点的数据为基础,分析了高污染过程期间后向气流轨迹的特征和区域ρ(PM10)的变化与输送过程,并对比分析了污染超标日和非超标日的ρ(PM10)与风速、相对湿度、平均温度及地面平均气压等常规气象要素之间的关系.结果表明:影响珠三角地区颗粒物高污染时段输送的气流主要来源于内陆东北气流和沿海气流.本地排放和区域城市间传输是造成珠三角地区颗粒污染过程的主要原因.静风或极小风,以及较高地面平均气压是影响珠三角地区PM10污染的主要气象要素.   相似文献   

5.
2015年9月7-16日珠三角地区出现了一次区域性的空气污染过程。利用地面空气质量和气象要素监测数据,结合后向轨迹模式综合分析了此次过程的污染特征及其成因。结果表明,此次事件主要是臭氧浓度上升导致的区域性污染,重污染区域呈现由珠三角中北部广佛肇地区向南部沿海城市转移的趋势;高压均压场控制、大范围盛行下沉气流以及地面风速小的静稳天气条件是此次污染过程持续和加重的重要气象因素;污染气团的远距离输送影响了该地区的空气质量状况。  相似文献   

6.
基于汾渭平原吕梁市2017~2019年颗粒物浓度监测数据和地面气象观测数据,利用后向轨迹聚类分析法以及潜在源贡献函数(PSCF)等方法研究了吕梁市冬季PM10和PM2.5大气污染特征及其潜在源区,最后结合轨迹密度分析法(TDA)、轨迹停留时间分析法(RTA)对轨迹聚类分析得到污染输送通道进行补充分类,并分析了不同输送通道的输送特征.研究发现,吕梁市2017~2019年颗粒物年均浓度逐年下降,其中PM10下降了28μg/m3,PM2.5下降了17μg/m3,冬季下降幅度最大.3a冬季风向风速和浓度的统计分析表明吕梁市颗粒物浓度受东北和西南风影响最为显著,其原因是受当地三川河河谷地形的影响.影响吕梁市PM10污染的潜在源区主要位于西南方向,PM2.5污染的潜在源区主要分布在西南、东和东南方向,颗粒物污染输送通道可概括为:西北、西南和偏东(东+东南)通道.西北通道气流移动速度快,途经新疆、内蒙、甘肃和陕西北部等区域;西南通道气流移动速度慢,主要途经陕西中南部渭河平原等污染严重的区域;偏东通道的气流移动速度慢,气流先沿太行山东麓南下,在经过太行山的横断山谷(太行陉、井陉等)时转向进入山西.PM10污染时西北通道贡献最大,偏东通道贡献最小,且两个通道下绝大多数发生的均是轻度污染,占比都在90%左右;PM2.5污染时三类通道下发生轻度污染的比重较PM10均下降,西南和偏东通道下发生中度污染以上的比重在50%左右,且西南和偏东通道途经的区域恰好是PSCF计算得到的潜在源区位置,说明了西南和偏东气流容易将细颗粒物输送至吕梁.WRF (天气预报模式)的风场模拟较为直观的解释了三类污染输送通道,且复杂地形是形成污染输送通道的一个重要因素.西北和西南污染输送通道主要受吕梁山脉的影响,偏东污染输送通道主要受太行山及其横谷的影响.  相似文献   

7.
2014年海口市大气污染物演变特征及典型污染个例分析   总被引:2,自引:0,他引:2  
主要分析了2014年海口市逐日的空气质量指数(AQI)和6种大气污染物的演变特征,同时,结合卫星遥感和轨迹模式等资料和方法对1次典型污染个例进行诊断.结果表明:海口市2014年的空气质量主要以优和良为主,6 d达到轻度污染级别,1 d达到中度污染(1月5日,AQI值为158).1月污染最为严重,其中,阶段1(1-6日)和阶段3(18-23日)AQI值偏高,阶段2(7-17日)和阶段4(24-31日)偏低.1月东亚地区天气形势演变对海口市AQI值具有动力影响.AQI偏高阶段,地面高压系统位于内蒙古东部,华南低层东北风场有利于污染物向海口市输送;而在AQI偏低阶段,地面高压系统东移出海,低层偏东风场不利于污染物的输送.后向轨迹聚类分析表明,1月海口市比率最大(39%)的气流主要经过大气污染相对严重的广东珠江三角洲(珠三角)地区,有利于污染物的区域传输.污染个例分析表明,海口市污染物浓度变化与气象要素有密切关系,10 m风速较小有助于近地面的污染物在区域内累积,水平风垂直切变偏弱对天气尺度扰动的发展和大气的垂直混合不利.卫星遥感和后向轨迹分析也表明,外源输送与海口市这次大气污染事件有直接关系.  相似文献   

8.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区.  相似文献   

9.
对北京2015年11月26日~12月2日出现的PM_(2.5)严重污染过程进行研究,分析了此次事件的污染特征和气象条件,结合HYSPLIT模型,用聚类方法对研究期间抵达北京的地面(500m)和高空(3000m)逐时72h气流后向轨迹聚类,并分析了地面和高空方向上气流轨迹对北京PM_(2.5)浓度的影响.运用潜在源贡献因子分析法和浓度权重轨迹分析法分别模拟了此次PM_(2.5)的主要潜在源区.结果表明,研究期间,北京PM_(2.5)小时均浓度数值变化较大.低温,高湿度和微风为北京PM_(2.5)严重污染过程的出现创造了适宜条件.不同方向气流轨迹对北京PM_(2.5)的影响在空间上存在显著差异.西北方向气流是影响北京PM_(2.5)浓度的主要气流轨迹,而地面来自南部的气流对北京PM_(2.5)浓度的影响也不能忽视.对北京PM_(2.5)的WPSCF和WCWT分析表明,蒙古国中西部、新疆东部、内蒙古中西部、山西北部、河北和山东北部对北京PM_(2.5)质量浓度贡献分别在0.7,200μg/m3以上,表明这些地区是影响此次北京PM_(2.5)的重要潜在源区.  相似文献   

10.
上海地区高空气流长距离输送轨迹及其与酸雨的关系   总被引:2,自引:0,他引:2  
分析了影响上海地区的高空气流输送轨迹。不同月份影响上海的高空气流来向不一。轨迹输送路径与天气系统的变化密切有关,且与上海地区出现的酸雨有关。研究表明,上海地区的酸雨,除与局地污染有关外,还与远处输送的外来污染有关。这些外来污染影响,主要来自上海西南向的北部湾和两广等地。也有部分来自东北——东方向的南朝鲜和日本西部地区。  相似文献   

11.
成渝地区空气重污染天气形势分析   总被引:4,自引:3,他引:1  
利用Lamb-Jenkinson客观环流分型法,对成渝地区及4个子区域2014—2018年高度场和海平面气压场进行了环流分型,并探讨了环流型与空气污染的关系.结果表明,成渝地区海平面气压场的最高频率环流型为东北气流型(NE),850 hPa上为高压型(A),500 hPa上为平直西风气流型(W).综合来看,成渝地区易发生污染天气形势是:高空500 hPa为平直西风(W),地面和850 hPa上为低压(C)或东南气流型(SE);易出现优良天气的环流形势是:高空500 hPa为平直西风(W),地面和850 hPa上为高压(A)或东北气流型(NE).对个例进行分析后发现,当地面为气旋或东南气流,同时风速较小时,不利于污染物的水平扩散;若高空为弱脊控制或者为槽后西北气流,则在下沉气流的作用下,不利于污染的垂直扩散,地面污染进一步加重.  相似文献   

12.
利用常规地面气象资料、NCEP/NCAR再分析资料以及全国PM2.5浓度数据,并结合后向轨迹、空气污染输送指数和传输通量分析,针对2019年12月10~11日一次冷锋输送造成我国中东部地区出现的大范围霾天气过程进行了分析.结果表明:(1)霾期间高空500hPa以经向环流为主,伴随着高空低压槽引导地面冷锋向东南方向移动,污染物浓度大值区也依次由华北地区移至黄淮、江淮地区.(2)冷锋过境前,华北至长江三角洲区域PM2.5浓度均有明显增涨;北京以偏南方向的污染物输入为主,济南以西北和偏东方向输入为主,南京则主要是偏北和偏西方向的输入.(3)冷锋过境时,冷空气迅速将北京站的污染物清除;而济南站则受高压底部偏东风回流的影响,PM2.5浓度维持在50μg/m3左右;冷锋推进至南京站时西北风已较小,对污染物的清除作用不明显.以江苏省为例,整个过程中,江苏本地污染物贡献占25.8%,江苏以外的污染物贡献占74.2%,以输送为主.(4)冷锋过境后,3站的边界层结构也略有不同,北京站的逆温层迅速被打破;济南站由于受海上暖湿平流影响,近地面由等温层变成逆温层;而南京站的近地面则由逆温层变为等温层.本研究揭示了在冷锋南下过程中,上游污染物对下游地区的影响,以及南北方站点表现出不同的污染物变化和清除特征.  相似文献   

13.
长三角地区2015年大气重污染特征及其影响因素   总被引:4,自引:0,他引:4  
基于2015年长三角地区129个环境空气质量监测站的空气质量指数(AQI)及主要大气污染物浓度数据,结合气象资料和HYSPLIT后向轨迹模式,探究长三角地区大气重污染的时间变化和空间集聚特征,并深入分析气象条件和区域传输对重污染过程发生和维持的影响.结果表明,2015年长三角地区各城市平均出现AQI超过200的重污染天气共8 d,重污染频率为2.01%,PM2.5作为首要污染物出现频次最多.从时间变化看,重污染主要分布在1月和12月;从空间分布看,北部地区重污染相比南部地区更为严重,徐州和常州市出现频率最高.选取典型重污染过程1月9—11日(纬向扩散型)、1月24—26日(经向扩散型)和12月20—26日(两种模式相结合的重污染天气)进行成因分析,发现长三角地区重污染天气主要受到西北风向、低风速、高湿度和逆温层的影响,导致大气污染物积累且不易扩散.基于HYSPLIT的大气传输轨迹及频率分布表明,来自西北方向的气流对江苏北部地区的污染输送特征有着显著影响.  相似文献   

14.
基于卫星遥感和地面观测资料的霾过程分析   总被引:3,自引:0,他引:3  
利用MODIS、CALIPSO卫星观测的气溶胶产品和地面空气质量、气象资料,并结合HYSPLIT后向轨迹模式,探讨了2013年12月1~9日长江三角洲地区一次持续性的严重霾污染过程的形成、特征及其可能来源.研究表明,此次污染过程中长江三角洲地区8个代表城市大部分时间处于霾污染的状况下,气溶胶光学厚度(AOD)显著增长,空气质量指数(AQI)均达到或超过污染限值,且以中度以上污染为主.污染发生时,气溶胶主要存在于地面至2km的大气层内,尤其是850m以下.根据体积退偏比和色比得出球形气溶胶出现频率高于非球形气溶胶,大粒径气溶胶出现频率高于小粒径气溶胶,进而得到污染期间气溶胶的主要类型为“污染型”气溶胶.污染物的近距离的输送和持续小风,无降水的静稳气象条件而导致污染物难以扩散稀释而累积在本地是造成长江三角洲区域污染范围广、时间长、程度重的主要原因.  相似文献   

15.
太行山两侧污染物传输对横谷城市气溶胶的影响分析   总被引:1,自引:1,他引:0  
利用2017~2019年太行山横谷城市阳泉PM10和PM2.5逐时浓度资料和对应时刻风速风向数据,结合HYSPLIT后向轨迹模型通过聚类分析、潜在源贡献因子和浓度权重轨迹方法分析了横谷城市气流输送特征及对阳泉市气溶胶的影响,并进一步探讨了太行山两侧大气污染物的交换特征.阳泉市气溶胶日变化为单峰单谷型,冬季最高值出现在10:00~11:00,其他季节多在09:00,最小值均在15:00~16:00;月际变化呈1月最高、8月最低.受横谷地形影响,地面风向以偏东风和偏西风频率最高;除小风天气外,春秋季偏西风引起的沙尘天气和冬季偏东风输送也会引起阳泉气溶胶浓度升高;后向轨迹结合污染特征显示,各季节污染轨迹占比为春季26.2%、秋季36.4%和冬季33.7%,主要分布在阳泉的西南和东南区域,冬季在东北区域也有分布;山脉两侧均存在显著的细颗粒物传输,而起源或途经太行山西侧的轨迹粗颗粒物输送亦相对较多;污染轨迹中偏西气流输送对PM10超标率影响更大,偏东气流则主要影响PM2.5的超标率.不同季节阳泉市气溶胶主要污染潜在源区存在差异,春季为西南和东南两区域;秋季为西南及偏南区域,冬季主要位于偏南和偏东方向区域,山西东南部及与河南北部交界区域是主要的污染贡献源区,太行山两侧通过井陉通道进行大气污染物的相互传输过程显著,其中东向西的PM2.5传输影响更显著.  相似文献   

16.
长江三角洲经济与工业污染重心演变及脱钩机理   总被引:1,自引:0,他引:1       下载免费PDF全文
赵海霞  蒋晓威 《中国环境科学》2013,33(10):1911-1919
以2000~2010年长江三角洲地区16市GDP、工业总产值、工业废水、工业废气和工业固体废物排放数据为基础,运用重心模型,通过测算重心坐标及其偏移距离,揭示长江三角洲地区经济重心和工业污染重心移动轨迹和演变规律,并从经济发展、产业结构、污染转移、环保投资等方面解析其演变机理.研究结果显示:经济重心与工业污染重心均位于几何重心的西北方向,但两者重心路径偏移呈现出一定的脱钩现象;经济重心呈现向西北方向偏移,其中GDP、工业重心偏移距离分别为9.45,7.58km;工业污染重心则向东南方向移动,其中工业废水、工业废气、工业固体废物重心偏移距离分别为18.11,28.98,3.84km;工业污染重心和经济重心迁移轨迹之间的脱钩现象受多种因素的驱动.其中,经济结构优化和发展不平衡加剧了经济重心向西北方向移动;环保投资推动了工业污染重心向东南方向移动;产业结构重型化及污染的地区间转移一定程度的加剧了工业污染重心向东南方向移动.  相似文献   

17.
为了揭示柳州城区春冬季PM2.5的来源及其潜在源区分布和贡献,利用2018年24h自动监测数据和气象数据对柳州市大气污染物浓度变化特征进行了分析,并且使用后向轨迹模型(HYSPLIT)对春冬季柳州市PM2.5逐日72h气流后向轨迹和前向轨迹进行聚类分析,同时结合潜在源贡献因子分析法(WPSCF)和轨迹浓度权重法(WCWT)对其潜在源区和浓度贡献进行了分析.结果显示,(1)在研究期内,不利的主导风向和工业区布局导致研究区PM2.5在春冬季污染较严重,且工业源和交通源是其主要本地来源;(2)春冬季PM2.5高值主要来源于西北和东南方向,其中,西北向PM2.5主要来源于本地排放,且浓度在空间上呈现西高东低的趋势;(3)春季后向轨迹PM2.5浓度整体大于冬季,春冬季中对柳州市PM2.5影响最大轨迹均来自东部的短距离输送,而来自西北的气流轨迹输对PM2.5贡献最低.春冬季柳州市大气PM2.5通过气流传输对贵州地区大气环境有较大影响;(4)春季,柳州市PM2.5的主要潜在源区分布在广西东南部、广东中西部、南海沿岸海域、湖南中部、江西西北部、湖北东部及安徽西北部;冬季,主要分布在广西东南部、广东西南部和南海沿岸海域.  相似文献   

18.
舟山本岛大气污染输送过程的数值模拟分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用HYSPLIT-4后向轨迹模式和NCEP(美国国家环境预报中心)的2012年GDAS(全球资料同化系统)气象数据,结合NO2、PM2.5、PM10和SO2等常规大气污染物的质量浓度数据,对舟山本岛2012年4月、7月、10月和12月的大气污染输送过程进行了模拟,并通过聚类分析和潜在源区分析〔包括PSCF(潜在源贡献)和CWT(浓度权重轨迹)计算〕,确定大气污染传输路径及影响源区. 结果表明:舟山本岛气流后向轨迹呈明显的季节变化特征,4月主要受来自黄海海面气流轨迹的影响,其占总轨迹数的36.7%,ρ(PM10)为(53.24±24.33)μg/m3;7月以途经琉球群岛和东海气流轨迹为主,占总轨迹数的48.4%,对ρ(NO2)、ρ(PM2.5)、ρ(PM10)和ρ(SO2)贡献分别为(24.63±6.33)、(28.60±4.83)、(52.89±18.76)和(8.67±3.11)μg/m3;10月气流轨迹主要来自于东海海面,占总轨迹数的49.2%;12月气流则主要来自辽宁南部和黄海,占总轨迹数的66.1%,对ρ(NO2)、ρ(PM2.5)、ρ(PM10)和ρ(SO2)贡献分别为(28.48±15.14)、(58.71±14.10)、(69.83±38.94)和(20.83±13.28)μg/m3. 舟山本岛PM2.5的潜在源主要为毗邻城市间局地污染,集中于浙江沿海城市及杭州湾、上海等地.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号