首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
水肥气耦合对温室番茄地土壤N2O排放及番茄产量的影响   总被引:1,自引:0,他引:1  
为揭示水肥气耦合对温室番茄地土壤N_2O排放的影响,提出适宜的温室番茄增产减排措施,采用静态暗箱-气相色谱法监测土壤N_2O的排放,分析水肥气耦合条件下土壤温度、灌溉水利用效率(WFPS)、NO~-_3-N、O_2含量的变化规律以及N_2O排放的影响机制.加气条件下设两个灌水水平0.6 W和1.0 W(分别代表亏缺40%灌溉和充分灌溉,W代表充分灌水时的灌水量)和3个施氮水平(120、 180和240 kg·hm~(-2),分别代表低、中和高氮,以50%F、 75%F和F表示,其中F为当地推荐施氮量),以不加气充分灌溉(O为加气灌溉,CK为常规滴灌)条件下3种施肥水平为对照,共9个处理.结果表明,充分灌溉(W2F1O、W2F2O和W2F3O)的N_2O累积排放量较亏缺灌溉(W1F1O、W1F2O和W1F3O)处理平均增加了55.7%(P0.05);高氮条件下(W1F3O、W2F3O和W2F3CK)土壤N_2O排放较中氮和低氮平均增大13.4%和43.8%(P0.05),充分灌溉条件下加气处理(W2F1O、W2F2O和W2F3O)较相应不加气处理(W2F1CK、W2F2CK和W2F3CK)N_2O排放平均增加11.2%(P0.05).加气、施氮量和灌水量的增加可增加番茄产量和单产N_2O排放量.高氮处理番茄产量和单产N_2O排放量较中氮处理分别增加了12.5%(P0.05)和3.9%(P0.05),高氮处理番茄产量和单产N_2O排放量较低氮处理显著增加了30.4%和9.6%(P0.05),加气充分灌溉较加气亏缺灌溉处理番茄产量和单产N_2O排放量分别显著增加了29.7%和18.7%(P0.05),加气处理(W2F1O、W2F2O和W2F3O)较不加气处理产量(W2F1CK、W2F2CK和W2F3CK)平均增加了10.4%(P0.05),单产N_2O排放量增加但不显著.灌水量增加、施肥量降低、加气均可显著增大肥料偏生产力,减小灌溉水分利用效率(IWUE).综合考虑N_2O累积排放量、作物产量、氮肥利用效率、IWUE和单产N_2O排放量,得出加气低氮充分灌溉为较优的管理模式.本研究结果为温室番茄的增产减排提供了一定的参考.  相似文献   

2.
设施菜田土壤N2O产生对O2的响应   总被引:1,自引:0,他引:1  
以添加(DIS)/不添加(DI)玉米秸秆的常规设施菜田土壤为研究对象,通过室内培养试验,利用在线自动监测培养系统,在不同初始氧气体积分数下(0%、1%、3%、5%和10%)监测土壤N_2O、NO、N_2和CO_2产生量的动态变化,并同步分析了土壤无机氮(NO-2、NO-3、NH+4)含量,同时设置添加Na Cl O3的处理抑制土壤NO-2的氧化,以期对比研究不同碳投入菜田土壤N_2O产生量对O_2的响应.结果表明,厌氧条件下土壤N_2O产生量显著高于有氧条件下土壤N_2O产生量(P0.01).当氧气体积分数≤1%时,添加秸秆的(DIS)土壤N_2O产生量显著高于未添加秸秆的(DI)土壤(P0.01).土壤中氧耗竭时会观察到明显的N_2O产生速率峰值,但N_2产生速率峰值随着初始氧气体积分数的升高极显著降低(P0.01),反之,土壤中如果没有出现氧耗竭的现象,则N_2O和N_2产生量随着初始氧气体积分数的升高显著降低(P0.01).初始氧气体积分数介于1%~5%时,培养过程中会观察到持续的NO-2累积,且在该氧梯度内N_2O/(NO+N_2O+N_2)指数显著高于0%以及10%初始氧气体积分数的处理,此外,添加Na Cl O3后,当初始氧气体积分数为5%和10%时,持续增加的NO-2与N_2O产生量两者之间线性相关(R2≥0.85).本研究结果表明,低氧条件下不完全的反硝化和NO-2诱导的硝化细菌反硝化共同作用,显著增加了土壤N_2O的产生量和N_2O/(N_2O+NO+N_2)指数;但是,有氧条件下土壤N_2O的产生量显著低于厌氧条件(P0.01).  相似文献   

3.
厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征   总被引:1,自引:0,他引:1  
了解厌氧条件土壤反硝化气体(N2、N2O和NO)、CO2和CH4排放特征,是认识反硝化过程机制的基础,并有助于制定合理的温室气体减排措施.定量反硝化产物组成,可为氮转化过程模型研发制定正确的关键过程参数选取方法或参数化方案.本研究选取质地相同(砂壤土)的两个水稻土为研究对象,通过添加KNO3和葡萄糖的混合溶液,将培养土壤的初始NO-3和DOC含量分别调节到50 mg·kg-1和300 mg·kg-1,采用氦环境培养-气体及碳氮底物直接同步测定方法,研究完全厌氧条件下土壤N2、N2O、NO、CO2和CH4的排放特征,并获得反硝化气态产物中各组分的比率.结果表明,在整个培养过程中,两个供试土壤的N2、N2O和NO累积排放量分别为6~8、20和15~18 mg·kg-1,这些气体排放量测定结果可回收土壤NO-3变化量的95%~98%,反硝化气态产物以N2O和NO为主,其中3种组分的比率分别为15%~19%(N2)、47%~49%(N2O)和34%~36%(NO);但反硝化气体产物组成的逐日动态均显现为从以NO为主逐渐过渡到以N2O为主,最后才发展到以N2为主.以上结果说明,反硝化气体产物组成是随反硝化进程而变化的,在以气体产物组成比率作为关键参数计算各种反硝化气体产生率或排放率的模型中,很有必要重视这一点.  相似文献   

4.
果园是太湖地区重要的经济作物,但是氮肥投入量大,氮素损失严重,使得排水沟道的活化氮浓度高,碳氮比下降,碳源可能是影响沟道底泥硝化与反硝化作用的限制因子.因此,采集了果园排水沟道沉积物,在实验室条件下,设计了C_0、C_1、C_2、C_3、C_4这5种有机碳源(葡萄糖)浓度水平,分别为0、5、25、50和100 mg·L~(-1),同时分别输入了5 mg·L-1的硝酸钾溶液.采用乙炔抑制法来研究果园排水沟道土壤的反硝化损失和不加乙炔研究N_2O的排放量.结果表明,加入碳源使土壤的反硝化速率(DN)和N_2O排放速率均有一定的增加,碳氮比对N_2O排放速率和DN的影响均极为显著(P0.05);碳氮比为10∶1时,累积反硝化损失总量和N_2O累积排放总量均较大(分别为319.26μg·kg~(-1)和6.20μg·kg~(-1)),占净氮的输入量比例均较高(分别为1.28%和0.02%),说明该处理情况下虽然对于沟道反硝化非常有利,利于去除土壤底泥中富集的氮素,但同时也增加了温室气体N_2O的排放.  相似文献   

5.
为了探讨生物炭对塿土CH_4、N_2O排放的影响,采用田间小区试验,测定了生物炭不同添加量(0、20、40、60、80t·hm-2)下冬小麦田CH_4、N_2O的吸收/排放通量、小麦产量、土壤有机碳、土壤含水率及不同土层土壤温度.结果表明,CH_4、N_2O的吸收/排放通量随生育期不同变化明显.添加生物炭后,CH_4累积吸收量增加了12.88%~71.61%,当添加量≥40 t·hm-2时,增"汇"作用达到显著水平,且添加量为40 t·hm-2时CH_4累积吸收量最高;N_2O累积排放量和全球增温潜势与对照相比没有显著差异;温室气体强度降低了13.24%~22.14%.添加生物炭提高了冬小麦产量,增产幅度为1.72%~32.19%,当添加量≥40 t·hm-2时,麦田增产效果达到显著水平,40 t·hm-2生物炭为麦田增产的最适添加量.同时,添加生物炭显著提高了土壤有机碳和土壤含水率,与对照相比,分别增加了1.42~2.69倍、7.08%~11.96%.综合来看,试验塿土表现为CH_4汇和N_2O源的功能,40 t·hm-2是其适宜的生物炭添加量.  相似文献   

6.
生物炭对华北农田土壤N2O通量及相关功能基因丰度的影响   总被引:2,自引:0,他引:2  
为了探寻施用生物炭对农田土壤氧化亚氮(N_2O)的减排效果和机制,于2015年3月27日至6月5日,利用盆栽实验研究了施用生物炭(CK,C1:5%,C2:10%,C3:15%,C4:30%)(质量分数)对华北农田土壤N_2O通量、氨单加氧酶(amo A)、亚硝酸盐还原酶(nir S、nir K)以及氧化亚氮还原酶(nos Z)基因丰度的影响.结果表明:(1)施用低量生物炭(5%)能够促进N_2O排放,施用中、高量生物炭可以起到抑制N_2O排放的效果,且生物炭用量为15%时减排效果最佳.(2)实验初期,施用生物炭对土壤硝化反硝化基因丰度影响较大,AOA和nir S基因丰度与生物炭施用量呈极显著正相关关系,nir K基因丰度与生物炭施用量呈显著正相关关系,AOB和nos Z基因丰度与生物炭施用量呈显著负相关关系;实验末期,AOA丰度与生物炭施用量表现为显著负相关关系,AOB丰度与生物炭施用量表现为显著正相关关系.(3)实验初期,N_2O排放通量与AOA、nir S基因呈现极显著的负相关关系,说明在土壤含水量较高的条件下,N_2O的产生受AOA、nir S基因丰度控制调节;实验末期,N_2O排放通量与nos Z基因呈现极显著正相关关系,说明在土壤含水量较低的条件下,N_2O的产生受nos Z基因丰度控制调节.本研究结果表明施用生物炭能够增加硝化反硝化功能基因丰度,并降低N_2O的排放,为华北农田合理施用生物炭提供了一定的理论依据.  相似文献   

7.
生物质炭对双季稻田土壤反硝化功能微生物的影响   总被引:10,自引:6,他引:4  
目前,基于田间条件下生物质炭添加对稻田反硝化微生物的调控效应还不甚明确.为此,本研究采用小区试验,通过在双季稻田添加不同量的小麦秸秆生物质炭(0、24和48 t·hm-2,分别用CK、LC和HC代表),结合实时荧光定量PCR(q PCR)和末端限制性片段长度多态性(T-RFLP)分析技术,研究了生物质炭添加对双季稻田休闲季和水稻季土壤反硝化微生物相关功能基因(调控硝酸还原酶的nar G基因,亚硝酸还原酶的nir K基因和氧化亚氮还原酶的nos Z基因)的影响.由于生物质炭呈碱性,添加到土壤后,可提高稻田休闲季土壤p H 0. 2~0. 8个单位.生物质炭本身含有部分可溶性N,因此,添加生物质炭可增加休闲季土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,增幅分别达21. 1%~32. 5%和63. 0%~176. 0%,但由于其吸附作用,降低了水稻季NH_4~+-N含量48. 8%~60. 1%.生物质炭添加增加了休闲季微生物生物量氮(MBN)含量,这可能是由于生物质炭较大的比表面积为微生物生存提供了适宜的环境,可利用养分的增加促进了微生物的生长.与对照相比,休闲季生物质炭引起的NH_4~+-N和NO_3~--N含量增加,促进NH_4~+-N向NO_3~--N的转化,进而增加nar G和nos Z的基因丰度(P0. 05),同时,生物质炭处理p H的提高促进了nos Z的基因丰度的增加,显著改变了反硝化功能基因nar G和nos Z的群落结构,并以此对反硝化作用产生影响,但未对休闲季氧化亚氮(N_2O)排放产生影响.而在水稻季,生物质炭增加了土壤nos Z的基因丰度(P 0. 05),HC处理增加了nir K基因丰度(P 0. 05),这也是导致水稻季HC处理N_2O排放增加的重要原因.生物质炭通过降低水稻季土壤NH_4~+-N含量,改变了nir K和nos Z基因的群落结构,而nar G基因群落结构的变化影响了土壤N_2O排放.综上所述,生物质炭可通过改变双季稻田土壤性质,来影响参与土壤反硝化作用的相关微生物,进而影响土壤N_2O排放及NO_3~--N的淋失.  相似文献   

8.
淡水资源短缺是干旱区农业可持续发展所面临的严峻问题,合理利用咸水灌溉是缓解淡水资源不足的重要手段.长期咸水灌溉会导致土壤盐分积累,进而影响氮素的转化和N_2O的排放.本研究通过10 a咸水灌溉试验,探究咸水灌溉对棉田土壤N_2O排放、反硝化细菌丰度和群落结构组成的影响.试验采用灌溉水盐度和施氮量两因子2×2随机区组设计,其中灌溉水盐度(以电导率表示)设置2个水平:0.35 dS·m~(-1)和8.04 dS·m~(-1),施氮量设2个水平:0 kg·hm~(-2)和360 kg·hm~(-2)(分别用SFN0、SHN0、SFN360和SHN360表示).结果表明,长期咸水滴灌棉田土壤盐分、含水量和NH~+_4-N含量显著增加,pH值、NO~-_3-N、有机质和全氮含量显著降低.咸水灌溉处理显著抑制N_2O排放,不施氮肥和施氮肥处理下分别较淡水灌溉降低45.19%和43.50%.氮肥施用显著增加N_2O排放,施肥处理N_2O排放较不施肥处理增加161%.不施肥条件下,咸水灌溉显著降低反硝化酶活性、nirK、nirS和nosZ基因丰度,α多样性.施肥条件下,咸水灌溉对nosZ型反硝化细菌的丰度无显著影响,但显著降低反硝化酶活性和nirK、nirS基因丰度.咸水灌溉和氮肥施用共同改变nirK、nirS和nosZ型反硝化细菌群落结构,灌溉水盐度对于反硝化细菌群落结构的影响要大于施肥.Lefse分析显示nirK、nirS和nsoZ型反硝化细菌差异物种随着灌溉水盐度的增加而增加,咸水灌溉显著改变反硝化细菌群落结构,导致优势种群数量增加.上述结果表明,长期咸水灌溉降低土壤N_2O排放,但会导致土壤盐分的持续上升,nosZ、nirK和nirS丰度的增加会促进N_2O排放.  相似文献   

9.
生物炭介导的不同地表条件下土壤N2O的排放特征   总被引:3,自引:1,他引:2  
为探究不同地表条件下农田土壤N_2O产生与释放对生物炭输入的响应,于2014~2015年小麦-玉米生长季,采用田间小区试验的方法,在不同生物炭用量[0 t·(hm~2·a)-1(CK)、5 t·(hm~2·a)-1(BC5)、45 t·(hm~2·a)-1(BC45)]及不同地表条件下[种植作物(以+表示)、裸地(以-表示)],对土壤N_2O释放、土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)的动态变化进行了观测分析.结果表明:(1)在小麦生长季,CK+、BC5+、BC45+这3个处理的土壤N_2O排放通量分别在21.70~88.91、21.42~130.09、64.44~179.58μg·(m~2·h)-1之间变动,BC45+处理显著高于其它2个处理(P0.05).其中在小麦生长盛期(返青拔节期-孕穗抽穗期),3个处理的土壤N_2O排放通量均较小麦越冬期显著下降(P0.05),而且BC45+处理基于CK+、BC5+的土壤N_2O排放通量增幅在小麦孕穗抽穗期已较其越冬期时分别降低了18.43%、14.62%.在玉米生长季前期,BC45+处理的土壤N_2O排放通量也显著高于BC5+和CK+处理(P0.05),但至玉米的抽穗期及成熟期,BC45+处理的土壤N_2O排放通量已与BC5+和CK+无显著差异.这说明随作物生长盛期的到来及地表覆盖度的增加,生物炭介导的土壤N_2O排放的增加效应得以有效抑制.同期裸地条件下相同生物炭处理的土壤N_2O排放通量结果也证实了这一点.(2)在小麦生长季及其同期的裸地条件下,与CK相比,两种生物炭处理均可增加土壤NO_3~--N和NH_4~+-N含量,但在作物生育盛期,BC5+、BC45+处理的两种氮素形态较CK+处理均有下降,尤以BC45+最为突出,其土壤NO_3~--N和NH_4~+-N含量分别下降了96.44%、69.40%.玉米生长季与小麦季有着相近的趋势.较高生物炭施用量土壤NH_4~+-N和NO_3~--N含量在作物生育盛期的明显下降与同期土壤N_2O的排放显著减少相呼应.因作物生长发育对氮元素吸收增加致呼吸底物减少可能是生物炭介导下N_2O排放减少的原因之一.(3)在小麦生长季,生物炭施用提高土壤pH从4.62至最高5.18.至玉米季时,土壤的pH值在4.42~5.02之间波动,土壤pH值相对低时土壤N_2O的释放量相对高,反之亦然.土壤pH可在一定程度上影响土壤N_2O释放.  相似文献   

10.
我国南方红壤区域普遍属于缺磷土壤,种植作物需要施用较多的磷肥,但添加磷对水稻-油菜轮作土壤中N_2O的排放影响并不明确.以潜江、咸宁两处水稻-油菜轮作模式下的土壤为研究对象,添加不同浓度的磷(0、15和30 mg·kg-1)和不同浓度的氮(0和100 mg·kg-1)进行室内培养实验,探究添加磷对水稻-油菜轮作土壤N_2O排放的影响.结果表明,添加磷对土壤中N_2O的排放有较为显著的影响,但影响的方式有所不同:在土壤本身氮比较少的情况下,添加磷会促进土壤中微生物对氮的固定,降低N_2O的排放;在土壤中有充足的氮情况下,添加较少的磷会促进土壤中硝化微生物的活动,促进N2O的排放,但添加较多的磷同样会促进土壤中微生物对氮的固定,相比于添加较少的磷处理会抑制N_2O的排放;在土壤本身磷的含量较为充足的情况下,无论土壤中的氮源是否充足,添加磷仅对土壤中N_2O的排放起抑制作用.  相似文献   

11.
利用生物炭吸附面源污染水体NH4+-N并将其进行还田可实现此氮资源由水体到农田的安全有效迁移,而探索负载NH4+-N生物炭对N2O-N排放和NH3-N挥发的影响则对于减施化肥和降低土壤氮素损失意义重大.本研究采用土柱试验,设置4个处理:对照(不施氮肥,CK)、单施化肥(NPK)、负载氮+化学磷钾肥(N-BC+PK)和生物炭+化肥(BC+NPK).结果表明,相较NPK和BC+NPK处理,N-BC+PK处理N2O-N累积排放量、NH3-N累积挥发量、气态氮素累积损失量(以N计)分别显著降低了33.62%和24.64%、70.64%和79.29%、64.97%和73.75%(P<0.05).特别需要说明的是,BC+NPK处理相比NPK处理显著增加了NH3-N累积挥发量(P<0.05).综上所述,负载NH4+-N生物炭可显著减少N2O-N排放和NH3-N挥发,且其减排效果显著优于传统的生物炭化肥配施.本研究结果将为富营养化水体NH4+-N农田回用和土壤气态氮素减排提供理论依据和数据支持.  相似文献   

12.
生物炭具有一定的增产和减少N2O排放效果,但关于其相关氮循环微生物作用的动态变化过程了解较少.为探明热带地区生物炭的增产减排效应潜力及相关微生物动态作用机制,通过辣椒盆栽试验对比添加生物炭(B)、常规施肥(CON)和不施氮(CK)处理对辣椒产量、氧化亚氮(N2O)的排放及相关功能基因丰度的影响.结果表明,CON处理产量高于CK处理;与CON处理相比,生物炭显著增加辣椒产量18.0%(P<0.05),添加生物炭在辣椒生长的大部分时期增加土壤NH+4-N和NO-3-N含量;在辣椒的生长周期内,相比CON处理,生物炭处理显著减少土壤N2O累积排放量18.3%(P<0.05).N2O排放通量与氨氧化古菌(AOA)和氨氧化细菌(AOB)的amoA基因丰度呈极显著负相关(P<0.01);与nosZ基因丰度呈显著负相关(P<0.05),表明N2O排放可能主要来自反硝化过程;在辣椒生...  相似文献   

13.
农田排水沟通过底泥硝化-反硝过程可消纳部分农业面源氮.水稻、蔬菜和水果是太湖地区种植业的主要土地利用类型,各种植区排水河沟密布,且不同种植区沟道接受外源氮差异明显,直接影响沟道消纳氮能力.分别采集太湖地区果园、稻田和菜地种植区排水沟道沉积物,设计上覆水N0、N1、N2、N3和N4这5个外源NO-3-N输入梯度,净氮输入量分别为0、0.5、1.0、5.0和10 mg·L~(-1),开展室内培养试验,研究外源氮输入对不同土地利用区排水沟道底泥反硝化和N2O排放的影响.结果表明,外源氮输入激发了排水沟底泥反硝化作用,3条沟道底泥反硝化速率均随上覆水NO-3-N输入浓度增大显著增大(P0.05),底泥累积反硝化量与输入NO-3-N浓度呈显著线性正相关关系(R20.75);除菜地外,沟道底泥N2O排放速率和累积排放量随外源NO-3-N输入浓度增大均无显著增大趋势(P0.05).在无外源氮或低外源氮输入时(N0和N1),果园、菜地和稻田种植区3种沟道之间底泥反硝化和N2O排放累积损失氮量的差异不显著(P0.05).随NO-3-N输入浓度增大,特别是高外源氮输入(N3和N4)条件下,果园和稻田排水沟道底泥反硝化消纳氮量显著高于菜地沟道底泥反硝化损失氮量(P0.05),而菜地排水沟底泥N2O排放损失氮量显著高于其它2条沟道底泥的N2O排放损失氮量(P0.05).排水沟底泥有机碳矿化速率与反硝化损失速率成正相关关系(n=15),微生物矿化(CO2-C)作用促进了沟道底泥硝化反硝过程.  相似文献   

14.
生物炭作为一种生物质废弃物的热解产物,逐渐被应用于受污染水体治理.生物炭具有提高孔隙、吸附氮磷、控制温室气体排放等作用.通过在温室内构建生物炭投加比为40%、30%、20%、10%和0%的微型潜流湿地系统(分别命名为BW-40、BW-30、BW-20、BW-10和CW-K),探究生物炭投加对湿地污染物去除及N_2O排放的影响.结果表明,投加生物炭可以提高出水氧化还原电位(oxidation-reduction potential,ORP),降低电导率(conductivity,Cond),但影响均不显著(P 0. 05).5组湿地系统中化学需氧量(COD)去除率均达到90%,但随着生物炭投加比的增加,氨氮(NH_4~+-N)和总氮(TN)的去除效果显著提高(P 0. 05).湿地NH_4~+-N平均去除率为(34. 76±14. 16)%~(57. 96±10. 63)%,TN平均去除率为(70. 92±5. 68)%~(80. 21±10. 63)%.各湿地系统N_2O的平均释放通量在13. 53~45. 30 mg·(m~2·d)~(-1)之间,生物炭投加可以通过减少亚硝态氮(NO_2~--N)累积浓度和积累时间,实现N_2O减排,并显著减少湿地中N_2O排放占TN去除的百分比(P 0. 05). 40%的生物炭投加比可以实现70. 13%的N_2O减排效果.  相似文献   

15.
为研究生物炭添加(B0:0 t·hm-2、 B20:20 t·hm-2、 B40:40 t·hm-2)和地膜覆盖(FM:覆膜、 NM:不覆膜)对菜地N2O排放的影响,以西南大学农场内辣椒-萝卜轮作菜地为研究对象,采用静态暗箱/气相色谱法进行为期1 a的田间原位观测.共设置6个处理,分别为NMB0(CK)和FMB0、 NMB20和FMB20、 NMB40和FMB40.结果表明,FM显著提高辣椒季土壤中铵态氮和硝态氮含量(P<0.05),而对萝卜季土壤环境因子均无显著影响.与NM相比,辣椒季FM分别对B0、 B20和B40处理下的N2O排放提高了52.87%、 52.97%和52.49%(P<0.05),但萝卜季FM对N2O排放无显著影响.生物炭对辣椒和萝卜季土壤环境因子均无显著影响.萝卜季生物炭添加减少了28.76%~67.88%的N2O排放(P<0.01),辣椒季生物炭添加对N2O排放无显著影响...  相似文献   

16.
以盐渍土壤为研究对象,通过吸附试验和室内土壤培养试验,分析生物炭及木醋液酸化生物炭与尿素配施后对盐渍土壤活性氮、脲酶活性和氨挥发的影响,为提高盐渍土壤氮素有效性提供理论和技术支撑.吸附试验表明,木醋液酸化生物炭提高了对铵态氮的吸附量,与生物炭相比,提高了2.28%~18.18%.土壤培养试验表明,与单施尿素处理相比,生物炭和木醋液酸化生物炭与尿素配施处理使土壤硝态氮、铵态氮分别减少了0.72%和25.26%、 1.11%和16.93%;提高了土壤可溶性有机氮和可溶性全氮含量.木醋液酸化生物炭与尿素配施提高了脲酶活性,而生物炭与尿素配施处理则降低了土壤脲酶活性.木醋液酸化生物炭与尿素配施处理氨挥发累积量在不同培养时期均低于单施尿素处理及生物炭与尿素配施处理,且能降低土壤的pH,而未改性的生物炭则提高了土壤pH.因此,在盐渍土区,采用木醋液对生物炭进行酸化后再与氮肥配合施用,不仅有效降低了土壤pH,提高土壤脲酶活性以及可溶性有机氮含量,还可以适当降低土壤铵态氮和硝态氮含量,减少氨挥发,有利于减少土壤无机氮素的损失和提高盐渍土壤氮素有效性.  相似文献   

17.
人工湿地中基质的种类和填充方式会影响人工湿地中微生物的多样性及丰度,进而影响污水处理效果.通过在温室内构建空白-人工湿地(CW0)、铁矿石-人工湿地(CW1)、生物炭-人工湿地(CW2)和铁矿石+生物炭-人工湿地(CW3)这4组湿地,研究不同填料人工湿地系统的污水处理效果和温室气体排放及微生物群落结构的差异.结果表明,添加铁矿石或者生物炭能够提高-0.12%~1.7%的COD去除率.添加生物炭能够分别提升22.48%的NH+4-N和6.82%的NO-3-N去除率,并分别降低83.91%的CH4和30.81%的N2O排放通量.添加铁矿石能够降低1.12%的NH+4-N去除率,提高3.98%的NO-3-N去除率,并分别降低33.29%的CH4和25.2%的N2O排放通量.添加生物炭或者铁矿石均能够增加放线菌门(Actinobact...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号