首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
果园是太湖地区重要的经济作物,但是氮肥投入量大,氮素损失严重,使得排水沟道的活化氮浓度高,碳氮比下降,碳源可能是影响沟道底泥硝化与反硝化作用的限制因子.因此,采集了果园排水沟道沉积物,在实验室条件下,设计了C_0、C_1、C_2、C_3、C_4这5种有机碳源(葡萄糖)浓度水平,分别为0、5、25、50和100 mg·L~(-1),同时分别输入了5 mg·L-1的硝酸钾溶液.采用乙炔抑制法来研究果园排水沟道土壤的反硝化损失和不加乙炔研究N_2O的排放量.结果表明,加入碳源使土壤的反硝化速率(DN)和N_2O排放速率均有一定的增加,碳氮比对N_2O排放速率和DN的影响均极为显著(P0.05);碳氮比为10∶1时,累积反硝化损失总量和N_2O累积排放总量均较大(分别为319.26μg·kg~(-1)和6.20μg·kg~(-1)),占净氮的输入量比例均较高(分别为1.28%和0.02%),说明该处理情况下虽然对于沟道反硝化非常有利,利于去除土壤底泥中富集的氮素,但同时也增加了温室气体N_2O的排放.  相似文献   

2.
采集宁夏引黄灌区排水沟道底泥,开展上覆水土柱培养试验,分别模拟0,5,10,20mg/L 4种外源氮输入梯度和0,100mg/L 2种外源碳输入梯度处理下沟道水质的变化情况.在水力停留培养47d内对上覆水NO3--N、NH4+-N、DOC及反硝化速率进行测定,并计算氮素消纳量以评估底泥反硝化脱氮潜势与阈值.结果表明:上覆水NO3--N浓度随时间延长而降低(P<0.01),且同时段内上覆水NO3--N浓度在外源碳添加较无碳源条件下显著降低(P<0.05),试验末期NO3--N浓度在无碳源和添加碳源条件下分别下降52.1%,93.6%;添加碳源条件下上覆水NO3--N浓度在20d时已稳定至较低水平,而未添加碳源处理NO3--N浓度在试验47d后仍有较大消纳空间;无碳源和添加碳源条件下底泥反硝化氮素消纳量阈值分别为263.7,865.6μmol/L,氮素累积消纳量占培养柱体系内总氮量的比率随外源碳氮的增加而增大(P<0.05),未添加碳源条件下反硝化过程可以消纳培养土柱体系内10.3%~11.4%的氮量,而在添加碳源后提高至17.7%~37.3%本研究可为引黄灌区农业面源污染高效治理提供科学依据.  相似文献   

3.
不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放   总被引:5,自引:2,他引:3  
在实验室培养条件下,设计N0,N1,N2,N3 4种氮输入梯度,净氮输入量分别为0,1,2 和5 mg/g,采用乙炔抑制技术,研究草甸沼泽土反硝化损失和N2O排放. 结果表明:培养期间(23 d)N1,N2和N3梯度的N2O排放速率平均值分别为12.55,7.59和4.04 μg/(kg·h),反硝化损失速率平均值分别为11.52,9.87和3.10 μg/(kg·h),二者均明显高于对照(N0)〔0.09和0.10 μg/(kg·h)〕;但高氮输入(N2和N3梯度)会对N2O排放速率和反硝化损失速率产生一定的抑制作用,且随着梯度增大而加强,差异达到显著水平(P<0.05). 24 h时土壤有机碳矿化速率随氮输入梯度升高而增大,表明氮输入初期能对土壤有机碳矿化产生激发效应;但在整个培养期,有机碳矿化速率却随氮输入增加而降低,表明只有适当的氮输入才能促进土壤有机碳矿化,过量氮输入反而会对其产生抑制作用.   相似文献   

4.
硝酸盐连续回灌对生物反应器填埋场N2O产生的影响   总被引:1,自引:1,他引:0  
卞荣星  孙英杰  李晶晶  张欢欢 《环境科学》2014,35(11):4371-4377
异位硝化-原位反硝化是实现填埋场渗滤液脱氮处理的一种有效措施,但硝化反硝化过程中会产生强温室气体N2O.实验构建了3个新鲜垃圾生物反应器填埋场模拟装置,分别回灌NO-3-N浓度为50、100和300 mg·L-1的渗滤液,考察垃圾原位反硝化过程中N2O产生规律及其影响因素.结果表明,回灌不同浓度硝酸盐,N2O产生量均表现为初期浓度较大-下降-后期升高的规律;N2O产生量与回灌NO-3-N量正相关,其累积产生量分别为36 481、44 241、86 264μg,但反硝化消耗单位硝酸盐氮产生的N2O量(以N计)以及N2O转化率与回灌硝酸盐氮量呈负相关,N2O平均转化率分别为8.84‰、5.68‰和2.34‰.分析认为,各反应器垃圾降解后期反硝化碳源不足是N2O产生量高的主要原因.  相似文献   

5.
厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征   总被引:1,自引:0,他引:1  
了解厌氧条件土壤反硝化气体(N2、N2O和NO)、CO2和CH4排放特征,是认识反硝化过程机制的基础,并有助于制定合理的温室气体减排措施.定量反硝化产物组成,可为氮转化过程模型研发制定正确的关键过程参数选取方法或参数化方案.本研究选取质地相同(砂壤土)的两个水稻土为研究对象,通过添加KNO3和葡萄糖的混合溶液,将培养土壤的初始NO-3和DOC含量分别调节到50 mg·kg-1和300 mg·kg-1,采用氦环境培养-气体及碳氮底物直接同步测定方法,研究完全厌氧条件下土壤N2、N2O、NO、CO2和CH4的排放特征,并获得反硝化气态产物中各组分的比率.结果表明,在整个培养过程中,两个供试土壤的N2、N2O和NO累积排放量分别为6~8、20和15~18 mg·kg-1,这些气体排放量测定结果可回收土壤NO-3变化量的95%~98%,反硝化气态产物以N2O和NO为主,其中3种组分的比率分别为15%~19%(N2)、47%~49%(N2O)和34%~36%(NO);但反硝化气体产物组成的逐日动态均显现为从以NO为主逐渐过渡到以N2O为主,最后才发展到以N2为主.以上结果说明,反硝化气体产物组成是随反硝化进程而变化的,在以气体产物组成比率作为关键参数计算各种反硝化气体产生率或排放率的模型中,很有必要重视这一点.  相似文献   

6.
蠡河底泥中反硝化复合菌群富集及菌群结构研究   总被引:2,自引:2,他引:0  
雍佳君  成小英 《环境科学》2015,36(6):2232-2238
从无锡市滨湖区蠡河底泥中富集培养反硝化复合菌群,研究其在不同富集培养阶段TN、NO-3-N、NO-2-N、NH+4-N和COD动态变化,分析反硝化过程中气体释放总量、释放速率和成分,通过构建全长16S r DNA克隆文库研究其菌落结构.结果表明,反硝化复合菌群富集在阶段4时脱氮效果最佳,仅在9 h内,330 mg·L-1的TN负荷下,TN去除率达90.9%,NO-3-N去除率达100%,中间产物NO-2-N和NH+4-N积累量最少,分别为3.39 mg·L-1和16.64 mg·L-1,COD去除率达85%;释放气体260m L,气体主要成分为N2,同时还有少量的CH4和CO2等.富集培养反硝化复合菌群细菌属于Pseudomonadaceae科和Rhodocyclaceae科,为Proteobacteria门,OUT丰度分别为57.8%和31.6%,Pseudomonadaceae科是优势类群.  相似文献   

7.
田琳琳  王正  朱波 《环境科学》2018,39(12):5391-5399
农业源溪流与农田生态系统有着紧密的水文连接,其会随着农业非点源氮(N)污染的加剧而成为重要的N汇和氧化亚氮(N_2O)间接排放源.本研究采用静态暗箱-气相色谱法于2015年6~9月(所研究区域的雨季)原位测定了长江上游紫色土丘陵区农业源溪流的N_2O间接排放通量.结果表明,农业源溪流雨季中N_2O平均排放通量为12. 8μg·(m~2·h)~(-1),接近其所在区域内同季节农田的N_2O直接排放水平,是重要的农业N_2O间接排放源.该农业源溪流中N_2O间接排放系数值(EF5r=0. 01%)远低于IPCC的建议值(0. 25%)和重新计算的全球平均值(0. 20%),然而,全球EF5r的现有数据量仍十分有限、且有较大的空间差异,应加强对此类N_2O间接排放的研究,从而进一步修正EF5r的精度、减少N_2O间接排放估算的误差.本研究的N_2O间接排放通量与水中NO-3-N浓度正相关,反硝化是N_2O的主要产生过程.雨季中较强的降雨(如连续降雨日内降雨 9 mm)可促进溪流中NO-3-N浓度在雨后短期内急剧升高,进而激发水中N_2O间接排放通量的明显增加.  相似文献   

8.
外源营养盐输入后水体中营养盐浓度的时空变化   总被引:2,自引:0,他引:2  
傅玲  赵凯  王国祥  欧媛  范婤  毛丽娜  张佳  韩睿明 《环境科学》2014,35(4):1278-1284
在温室内的水泥沟渠中人工构建6种不同的植物镶嵌群落,通过人工添加营养盐的方式模拟外源营养盐输入,并持续测量单次营养盐添加后22 d内水体表层、中层和底层可溶性总氮(DTN)、可溶性总磷(DTP)、氨氮(NH+4-N)、硝氮(NO-3-N)以及亚硝氮(NO-2-N)浓度变化情况,以揭示单次外源营养盐输入后水体营养盐浓度的时空变化过程.结果表明:①不同水深和测量时间下各形态营养盐浓度有显著差别,植物群落类型对不同形态营养盐浓度影响不显著;②外源营养盐进入表层水体后扩散到中层水体的过程较为缓慢,在本实验条件下需要6 d;③实验过程中底层水体NO-2-N以外的其它营养盐浓度均无显著变化,外源营养盐输入仅影响表层和中层水体营养盐浓度;④单次外源营养盐输入一定时间后DTP和NH+4-N浓度逐渐下降到输入前水平,本实验条件下这一过程需要22 d,DTN和NO-3-N浓度则下降非常缓慢;⑤外源营养盐输入水体后不同深度水体中NO-2-N浓度均呈上升趋势,一方面说明外源营养盐输入后,水体N循环过程中的硝化作用和反硝化作用加强,另一方面也说明外源营养盐输入除危害水生生态系统健康以外更会直接危及人类自身的健康.  相似文献   

9.
不同生物炭用量对酸性菜地土硝化作用的影响   总被引:6,自引:2,他引:4  
采集了种植过蕹菜(60 d)的不同生物炭用量(0、2%、5%、10%干土重)的盆栽酸性菜地土,在60%土壤持水量和温度25℃培养条件下对土壤硝化作用进行了研究,并探讨了土壤硝化作用与土壤性质的关系.结果表明,通过Logistic修正模型(延滞期为0)拟合得出土壤NO-3-N随时间的变化为"S"型增长,与不施氮肥(CK)和施氮肥(NB0)处理相比,生物炭处理土壤NO-3-N累积量较高,生物炭提高土壤最大硝化速率(Kmax)同时减少达到最大硝化速率所需时间(t0)是其主要原因.Kmax与土壤pH、氨氧化细菌数量、NO-3-N、微生物生物量碳、氮,t0与微生物生物量氮、氨氧化细菌数量,最大硝化潜势(Np)与脲酶活性间显著相关.尽管生物炭提高Kmax,但却降低Np,生物炭对酸性菜地土硝化作用的影响以及NO-3-N淋失风险还需要进一步研究.  相似文献   

10.
厌气条件下百菌清对土壤N2O和CH4排放的影响   总被引:2,自引:1,他引:1  
郎漫  蔡祖聪 《环境科学学报》2009,29(10):2110-2117
在密闭、淹水、充N2的严格厌氧条件下对土壤进行了14d的培养试验,研究了杀菌剂百菌清在添加水平为田间施用量(FR)(5.5 mg·kg-1),20倍(20FR)和40倍田间施用量(40FR)时对强酸性、酸性、中性和碱性土壤N2O和CH4排放的影响.结果表明,20FR和40 FR的百菌清能够显著促进N2O向N2的还原,降低N2O排放,在酸性、中性和碱性土壤中培养14d后,对照处理的N2O排放量为0.076~0.46mg·kg-1,而20FR和40FR处理的N2O排放量为0.004~0.06mg·kg-1,降低了1个数量级.反硝化作用和有机氮矿化作用强的土壤中,百菌清减少N2O排放作用更明显.反硝化底物NO-3的存在对CH4的产生与排放具有显著的抑制作用.在加入百菌清未对NO-3浓度产生显著影响的土壤中,百菌清对CH4排放量没有明显影响,在对NO-3浓度产生显著影响的土壤中,CH4排放量随着NO-3的增加而减少,说明百菌清可能通过影响反硝化过程中NO-3的消耗而影响CH4排放.  相似文献   

11.
生物炭添加和灌溉对温室番茄地土壤反硝化损失的影响   总被引:5,自引:4,他引:1  
生物炭添加和灌溉是番茄地常用的田间管理措施,然而其对反硝化的影响还不清楚.本研究种植试验设置3个灌溉量水平分别为估算作物生育期需水量ET0的50%(W50%)、75%(W75%)、100%(W100%)和3个生物炭添加水平分别为B0(折合纯碳,0)、B25(折合纯碳,25 t·hm-2)、B50(折合纯碳,50 t·hm-2),在2014年和2015年番茄收获后,每个试验小区采集具有代表性的土样进行室内培养试验,采用乙炔抑制法来研究土壤的反硝化损失和不加乙炔研究N_2O的排放量.结果表明生物炭和灌溉量显著改变了土壤的理化性质.与B0相比,添加生物炭能够提高土壤全碳、全氮含量和pH值,降低铵态氮、硝态氮含量,而灌水量降低了土壤中全氮和全碳的含量.因此,与B0/W50%相比,B25/W75%和B50/W100%处理显著减少了反硝化损失量(P0.05).生物炭和灌溉量的交互作用对土壤无机氮含量和反硝化损失的影响均达到显著水平(P0.05),且对硝态氮的影响表现为灌溉量生物炭添加量两者交互作用,对铵态氮的影响表现为生物炭添加量灌溉量两者交互作用,对反硝化损失的影响表现为灌溉量生物炭添加量两者交互作用.反硝化损失量与土壤中无机氮含量、(CO_2-C)矿化量与N_2O排放量均呈正相关关系.不同生物炭添加量和灌溉量处理后明显影响了N_2O/DN(P0.05),培养结束时,各处理下的N_2O累积排放量/DN累积排放量差异较大,介于0.31%~1.88%.  相似文献   

12.
以亚热带区域闽江河口短叶茳芏中、高潮滩湿地为研究对象,于2014年7月至11月进行氮硫增强输入的实验,利用静态箱-气相色谱法测定潮滩湿地中N_2O排放通量,并同步测量相关的环境因子.结果显示,不同潮滩湿地N_2O排放通量对氮硫增强输入的响应存在差异,但总体上看均促进了N_2O的排放.与对照相比,NH_4~+-N输入使中、高潮滩排放通量分别提高了157.97%和236.36%;NO_3~--N输入使中潮滩提高了60.95%,而使高潮滩N_2O排放通量提高了246.77%;SO_4~(2-)-S输入分别使中、高潮滩N_2O通量提高50.68%和87.17%;而N-S复合输入则使中、高潮滩N_2O通量分别增加了84.20%和117.79%.不同的处理组对中、高潮滩的N_2O排放通量的促进作用分别表现为:NH_4~+-NN-SNO_3~--NSO_4~(2-)-S及NO_3~--NNH_4~+-NN-SSO_4~(2-)-S.氮硫增强输入改变了短叶茳芏潮滩湿地N_2O排放通量的变化规律,但除了NH_4~+-N处理对高潮滩N_2O排放通量的影响显著外,其他处理组的影响均未达到显著性水平.中、高潮滩湿地N_2O的排放通量与沉积物温度、含水率具有显著的相关关系,而与电导率相关性不显著.随着全球环境问题的日益严重,系统研究湿地生态系统N_2O排放的机制与规律,对于科学准确的估算全球温室气体排放量具有重要的意义.  相似文献   

13.
生物质炭对双季稻田土壤反硝化功能微生物的影响   总被引:10,自引:6,他引:4  
目前,基于田间条件下生物质炭添加对稻田反硝化微生物的调控效应还不甚明确.为此,本研究采用小区试验,通过在双季稻田添加不同量的小麦秸秆生物质炭(0、24和48 t·hm-2,分别用CK、LC和HC代表),结合实时荧光定量PCR(q PCR)和末端限制性片段长度多态性(T-RFLP)分析技术,研究了生物质炭添加对双季稻田休闲季和水稻季土壤反硝化微生物相关功能基因(调控硝酸还原酶的nar G基因,亚硝酸还原酶的nir K基因和氧化亚氮还原酶的nos Z基因)的影响.由于生物质炭呈碱性,添加到土壤后,可提高稻田休闲季土壤p H 0. 2~0. 8个单位.生物质炭本身含有部分可溶性N,因此,添加生物质炭可增加休闲季土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,增幅分别达21. 1%~32. 5%和63. 0%~176. 0%,但由于其吸附作用,降低了水稻季NH_4~+-N含量48. 8%~60. 1%.生物质炭添加增加了休闲季微生物生物量氮(MBN)含量,这可能是由于生物质炭较大的比表面积为微生物生存提供了适宜的环境,可利用养分的增加促进了微生物的生长.与对照相比,休闲季生物质炭引起的NH_4~+-N和NO_3~--N含量增加,促进NH_4~+-N向NO_3~--N的转化,进而增加nar G和nos Z的基因丰度(P0. 05),同时,生物质炭处理p H的提高促进了nos Z的基因丰度的增加,显著改变了反硝化功能基因nar G和nos Z的群落结构,并以此对反硝化作用产生影响,但未对休闲季氧化亚氮(N_2O)排放产生影响.而在水稻季,生物质炭增加了土壤nos Z的基因丰度(P 0. 05),HC处理增加了nir K基因丰度(P 0. 05),这也是导致水稻季HC处理N_2O排放增加的重要原因.生物质炭通过降低水稻季土壤NH_4~+-N含量,改变了nir K和nos Z基因的群落结构,而nar G基因群落结构的变化影响了土壤N_2O排放.综上所述,生物质炭可通过改变双季稻田土壤性质,来影响参与土壤反硝化作用的相关微生物,进而影响土壤N_2O排放及NO_3~--N的淋失.  相似文献   

14.
三江平原农田渠系中氮素的时空变化   总被引:6,自引:3,他引:3  
陆琦  马克明  卢涛  张洁瑜  倪红伟 《环境科学》2007,28(7):1560-1566
以三江平原开发强度不同的浓江上游段和别拉洪河中游段的农田排水渠系为研究对象,根据毛、农、斗、支、干5个渠道级别设采样点,分析TN、NH+4-N和NO-3-N在渠系中的时空变化规律及其影响机制.结果表明,别拉洪河中游段渠系中的TN、NH+4-N和NO-3-N浓度大于浓江上游段;TN、NH+4-N、NO-3-N的浓度峰值沿着渠系从低级向高级移动,浓江上游段峰值出现的最高级别是干渠,而别拉洪河中游段是斗渠;多等级的排水渠系对氮素起到了一定的截留作用,且别拉洪河中游段渠系对氮素的截留大于浓江上游段;2个渠系中的TN、NH+4-N的季节变化趋势相一致,6~9月逐月减少,而NO-3-N的季节变化不明显且没有规律;TN与NH+4-N、NO-3-N呈显著性正相关,浓江上游段TN与NH+4-N、NO-3-N之间的关系适合幂函数模型,而别拉洪河中游段适合三次曲线模型;通过多元回归分析得到别拉洪河中游段渠系中的TN浓度与NH+4-N、NO-3-N之间的关系模型可以解释78%的TN浓度.  相似文献   

15.
污水生物反硝化脱氮过程是一氧化二氮(N2O)的重要释放源之一.试验采用序批式反应器以甲醇为碳源(电子供体),硝酸盐(NO3--N)为电子受体驯化反硝化菌,并采用批处理试验研究不同电子受体、不同碳氮(C/N)比和不同初始亚硝酸盐(NO2--N)质量浓度条件下N2O释放情况.在典型周期试验和批处理试验中均能检测到N2O的释放.以NO2--N为电子受体时会释放较多的N2O,而以NO3--N为电子受体时释放的N2O相对较少.不同C/N比通过影响反硝化菌的活性进而影响N2O的释放,反硝化菌的活性和N2O的释放量均随着C/N比的降低而降低.N2O的释放量随着初始NO2--N质量浓度的增加而增加,一定浓度范围内的NO2--N会增强反硝化菌的活性.初始NO2--N质量浓度与N2O的释放量具有较好的指数相关性.  相似文献   

16.
为探究中国南方农田土壤氮迁移过程的反硝化与厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)速率变化和脱氮贡献本研究采集宛山荡麦稻轮作区农田不同层深土壤及农田、沟道、河岸带和湖泊沉积物等不同土地利用类型土壤样品,分析其理化性质采用Illumina MiSeq测序和实时荧光定量PCR (quantitative real-time PCR,qPCR)技术探究土壤样品的微生物群落组成和功能基因丰度应用同位素培养实验测定各样品的潜在反硝化与厌氧氨氧化速率(以N_2计,下同).结果表明,土壤反硝化速率与TOC、NH_4~+-N和NO_3~--N含量均显著正相关(P0.05),与nirS、nirK及nosZ等功能基因丰度亦呈显著正相关(P 0.05).农田表层土壤反硝化速率为(11.51±1.04) nmol·(g·h)~(-1),显著高于农田其他土壤层以及其他土地利用类型(P 0.05),而农田土壤中厌氧氨氧化速率在20~30 cm层最高,达到(0.48±0.07) nmol·(g·h)~(-1).此外,反硝化作用是农田表层土壤氮损失的主要原因,占91.9%~99.7%,而厌氧氨氧化在深层土壤N_2的产生过程中占有重要地位.  相似文献   

17.
生物炭具有一定的增产和减少N2O排放效果,但关于其相关氮循环微生物作用的动态变化过程了解较少.为探明热带地区生物炭的增产减排效应潜力及相关微生物动态作用机制,通过辣椒盆栽试验对比添加生物炭(B)、常规施肥(CON)和不施氮(CK)处理对辣椒产量、氧化亚氮(N2O)的排放及相关功能基因丰度的影响.结果表明,CON处理产量高于CK处理;与CON处理相比,生物炭显著增加辣椒产量18.0%(P<0.05),添加生物炭在辣椒生长的大部分时期增加土壤NH+4-N和NO-3-N含量;在辣椒的生长周期内,相比CON处理,生物炭处理显著减少土壤N2O累积排放量18.3%(P<0.05).N2O排放通量与氨氧化古菌(AOA)和氨氧化细菌(AOB)的amoA基因丰度呈极显著负相关(P<0.01);与nosZ基因丰度呈显著负相关(P<0.05),表明N2O排放可能主要来自反硝化过程;在辣椒生...  相似文献   

18.
亚热带农区生态沟渠对农业径流中氮素迁移拦截效应研究   总被引:15,自引:7,他引:8  
以我国亚热带农业面源污染防控工程——生态沟渠为研究对象,在2013~2014年对其径流量和每月进出口水质中NH~+_4-N、NO~-_3-N和TN的质量浓度进行监测,通过分析生态沟渠在不同时间段对不同形态氮素的去除差异,探讨了生态沟渠对面源污染中氮素迁移的拦截效应.结果表明,2 a内生态沟渠对NH~+_4-N、NO~-_3-N和TN的平均去除率分别为77.8%、58.3%和48.7%;拦截量分别为38.4、59.6和171.1 kg·a~(-1);进水中无机态氮NO~-_3-N和NH~+_4-N之和占TN质量分数的平均值为47.5%,出水中平均值为33.6%,比进水显著降低(P0.01).2014年生态沟渠中水生植物全部改种为绿狐尾藻后,对NO~-_3-N和TN的拦截率比2013年分别增加了30.5%和18.2%,表明种植绿狐尾藻进一步提升了生态沟渠对氮素的拦截能力.可见,生态沟渠对农区地表径流中氮素迁移有较好的拦截作用,可作为一项重要的农业面源氮污染防控技术.  相似文献   

19.
杨玉兵  杨庆  李洋  周薛扬  李健敏  刘秀红 《环境科学》2018,39(11):5051-5057
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生.  相似文献   

20.
姜应和  李瑶  张莹  张翔凌 《环境科学》2017,38(5):1898-1903
为了将污水厂尾水作为再生水进行利用,常常需要对尾水进行深度脱氮,针对尾水的水质特征,在深度脱氮时常常需投加碳源.试验采用树皮作为填料,兼作脱氮的缓释碳源,进行树皮填料人工湿地深度脱氮模型试验,研究进水NO_3~--N负荷对反硝化和树皮释放碳源的影响.结果表明,树皮填料人工湿地可稳定脱氮;反硝化速率遵循Monod关系式,随进水NO_3~--N负荷增大而递增,饱和常数KS=19.10 mg·L~(-1);硝氮去除率随进水NO_3~--N负荷增大而减小;在树皮填料人工湿地运行早期,树皮释碳总量、树皮释碳速率随进水NO_3~--N负荷增大而递增,与进水NO_3~--N均呈线性正相关;树皮静态释碳速率为0.2 mg·(g·d)-1,与腐朽木等中空松散的植物碳源相比,碳源缓释性能较好,释碳周期较长,是良好的缓释碳源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号