首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
运用消除趋势波动分析方法,对比分析了成都市2013年2月1-14日一次重度灰霾消散前后(其中,2013年2月1-7日为重度灰霾时段,2月8-14日为灰霾消散时段)8个监测站点(十里店、人民公园、梁家巷、金泉两河、三瓦窑、草堂寺、灵岩寺、沙河铺)大气PM2.5时空演化的长期持续性特征。研究显示,灰霾时段和灰霾消散时段PM2.5浓度演化均呈现出很强的长期持续性非线性特征。统计分析表明,在时空尺度上,灰霾时段和灰霾消散时段PM2.5浓度具有显著性差异,但定量表征PM2.5演化动力学特征的DFA指数却变化不大。进一步结合成都市气象资料分析认为,长期持续性是控制此次成都重度灰霾消散前后大气PM2.5浓度时空演化的内在动力学机制之一,也正是在该机制的主导控制下使得此次灰霾持续时间较长。该研究有助于进一步加深对灰霾期间PM2.5演化动力学过程的认识。  相似文献   

2.
针对成都市2014年1月22-31日的持续重度灰霾过程,运用频度统计分析、功率谱分析和去趋势波动分析方法,对成都市6个国控环境空气质量监测子站(草堂寺、金泉两河、梁家巷、人民公园、三瓦窑、灵岩寺)大气PM_(2.5)小时平均浓度时间序列的标度行为(标度律)进行实证研究。结果显示,此次灰霾期间高浓度PM_(2.5)的波动行为呈现明显的日周期循环规律,这与人类的生产生活具有密切关系。宏观上看,PM_(2.5)浓度波动在统计上服从典型的负幂律分布规律,具有标度不变分形特征。同时,利用功率谱及去趋势波动分析发现,各监测子站PM_(2.5)时间演化的DFA指数均在1左右,PM_(2.5)演化呈现1/f噪声性质,表明灰霾期间高浓度PM_(2.5)的动态演化过程表现出长程关联特性(或长期持续性),其波动关联特性在研究时段内呈现幂律分布的标度律。实证研究表明,此次灰霾期间成都市大气PM_(2.5)时间演化呈现出自组织临界性(SOC)基本特征,高浓度PM_(2.5)时间演化过程涌现出的长期持续性标度律很可能是由城市灰霾污染的SOC行为导致。该研究对深入认识灰霾天气大气PM_(2.5)非线性演化的内在动力学机制具有一定启示意义。  相似文献   

3.
为探讨冬季期间大气PM_(2.5)演化的多时间尺度效应,并阐释重度灰霾发生及演化的动力机制,该研究应用集合经验模态分解(EEMD)方法与自组织临界(SOC)理论,对成都市20171201-20180228冬季期间4个国控监测站点(即大石西路、金泉两河、君平街、三瓦窑) PM_(2.5)浓度时空演化规律进行实证研究。通过EEMD分解,获得了不同时间尺度上具有良好平稳性特征的固有模态函数(IMF)。大气PM_(2.5)演化的主要模态存在准4 h、准8 h和准24 h的平均周期,这些典型周期对应模态的累积贡献率基本上达到95%以上。研究表明,主要模态的准周期变化与各类型生产活动、交通排放紧密关联,这反映了大气系统中人为污染源的周期性输入作用。同时,研究发现,PM_(2.5)小时平均质量浓度波动函数服从幂律分布结构,具有标度不变性特征。进一步基于SOC理论探讨了大气PM_(2.5)浓度时空演化的内在动力规律,结合典型区域气象特征,阐明了冬季期间严重大气污染产生的宏观涌现机制。结果表明,EEMD方法所获得的不同IMF分量可以揭示大气PM_(2.5)时空演化的多尺度特征,但不同时间尺度上的IMF分量之间互不独立,各IMF分量的形成既受到准周期大气污染排放的作用,也受到大气系统非线性SOC动力机制的控制。  相似文献   

4.
为探索成都市PM_(2.5)污染物的空间来源及其演化机制,该文首先应用后向轨迹模型对灰霾期间抵达成都市的大气气团进行模拟,结果显示灰霾期间本地气团对成都市PM_(2.5)污染物的贡献远超过中远距离的外来气团,占比高达90%以上,局地空间内处于一种静稳状态。其次应用多重分形消除趋势波动分析法对灰霾期间PM_(2.5)的浓度序列进行多重分形分析,研究表明成都市灰霾期间PM_(2.5)浓度具有多重分形特征。最后运用相位随机替代法与随机重构法,对静稳条件下导致PM_(2.5)浓度多重分形特征的原因进行分析。结果表明灰霾期间,长期持续性在PM_(2.5)演化过程中占据主导地位,进而认为此次灰霾期间PM_(2.5)演化的长期持续性是其主要的内在动力机制,此时成都市大气空间内各局部空间PM_(2.5)浓度在多种要素的相互作用下逐步发展为一种相互同步的、均衡的平衡态。  相似文献   

5.
该研究采用多重分形消除趋势波动分析法,对成都一次灰霾污染过程中,PM10浓度在灰霾消散前后的多重分形特征进行分析,研究表明灰霾消散前后PM10浓度均具有多重分形特征。进一步运用相位随机替代法与随机重构法,对导致PM10浓度多重分形特征的动力原因进行分析。结果表明重度灰霾期间,长期记忆机制在PM10演化中均占据了主导控制作用;灰霾消散期间,虽然降水过程使得PM10多重分形特征的动力来源有所变化,但长期持续机制仍是多重分形特征的主要动力来源。尽管从表观上来看,大气降水过程显著降低了大气PM10浓度,但由于其内在动力机制并未得到本质的破坏,长期记忆机制仍是PM10演化的内在动力机制,从而可能导致未来特定气象条件下出现高浓度PM10污染,形成灰霾,后续监测数据证实了该论断。研究结果对于PM10浓度演化动力特征的研究以及灰霾预测预警机制的建立具有实际的参考意义。  相似文献   

6.
应用R/S分析、功率谱及强度-频度法对上海市PM10污染的时间尺度特征进行分析,同时将PM10污染事件与沙堆模型中的崩塌事件进行类比,发现上海市PM10污染的演化具有自组织临界性(SOC)复杂系统的相关特征.上海市PM10污染指数的长期波动特征,在动力学上主要是由PM10污染物的SOC机制导致的.小的污染源如民用炉灶、餐饮业、建筑施工等排放的少量污染物也有可能通过SOC行为形成较严重的空气污染事件.在2010年期间,上海市较严重空气污染事件(PM10污染指数为100~250)的发生可能性较大,具有一定潜在的重污染风险.  相似文献   

7.
利用2011年8月-2012年7月环保局(对照点)和钢研所(工业区)两个监测点的PM2.5的24小时连续监测数据,分析了上海市宝山区大气中PM2.5的浓度时空变化特征。并以四次灰霾事件为例解析了灰霾期间大气颗粒水溶性离子特征,以及灰霾期间PM2.5源特征。PM2.5中水溶性无机离子是以二次离子为主,因此,二次离子的污染水平可反映PM2.5的污染程度,是主要影响灰霾天气产生的物质。灰霾期间大气条件有利于二次离子的大量形成,更进一步加重大气细粒子的污染。而且,宝山地区大气细粒子污染具有受本地流动源和固定源双重排放控制的特征。  相似文献   

8.
我国城市间大气污染物的相互输送作用非常显著.舟山市大气污染物主要来源于长三角地区,本地源影响较小.因此,本文将以舟山市为例,应用频度统计分析方法,研究舟山市大气PM10污染演化宏观动态的统计分布规律.结果发现,舟山市大气PM10小时平均浓度的波动并非随机,而是在0.065~0.324 mg·m-3范围内具有标度不变特征,统计上服从典型的分形幂律分布.同时,为了阐明该分形幂律分布的产生动力机制,基于自组织临界理论,建立了大气PM10跨界输送模型.该模型以污染输送机制、二次颗粒物生成机制、城市内污染迁移扩散机制、大气自净机制这4个主导动力机制为核心,组建了非线性关联迭代算法.新的自组织动力模型的模拟结果定量地解释了舟山市大气PM10污染浓度的分形幂律统计分布规律的产生根源.同时,本研究结合区域风场等气象因素,深入讨论了大气PM10跨界输送的自组织行为机制.  相似文献   

9.
太原市冬季灰霾期间大气细颗粒物化学成分特征   总被引:12,自引:0,他引:12       下载免费PDF全文
研究了太原市灰霾发生期间大气PM2.5质量浓度和化学成分变化规律.采样时间为2011年12月27日16:00~2012年1月3日04:00,使用TH-150C中流量大气PM2.5采样器(采样膜为直径90mm的石英纤维滤膜)在山西大学环境科学研究所5层楼顶每隔4h采样一次,得到灰霾样品34个,非灰霾样品5个.采样期间对大气PM2.5质量浓度进行实时监测.结果表明:灰霾期间(初起、进展、鼎盛、减弱4个阶段)大气PM2.5平均浓度达(692±272)μg/m3,是非灰霾期间(即灰霾消失阶段) (54±12)μg/m3的12.8倍;在灰霾发生期间,大气PM2.5中Hg、Pb、As等重金属污染物、OC以及水溶性无机离子SO42-、NO3-、NH4+、K+、Cl-、F-浓度呈现相似的变化趋势,即在灰霾初起、进展阶段不断增加,在灰霾鼎盛期达到最大值,随后随着灰霾的减弱和消失而不断下降,最终降到一个较低的水平;而与燃煤关系不大的Zn元素、Ca2+、Mg2+等在灰霾各个时期浓度变化较小.以上结果说明冬季灰霾天气使太原市大气PM2.5浓度显著上升,并增加PM2.5中重金属、有机物和二次气溶胶含量,使其化学成分发生改变,同时也反映了冬季燃煤和生物质燃烧对太原市大气PM2.5的化学组成影响大于交通源和土壤扬尘.  相似文献   

10.
以长株潭城市群3个城市(长沙、株洲和湘潭)疫情期间(2020年1月24日~2020年5月31日)大气PM2.5和O3小时平均浓度时间序列数据为研究对象,对污染物日变化规律、长期持续性、多重分形性及自组织演化动力学特性进行研究.以期阐释疫情期间高污染事件发生及演化的内在动力机制.首先,对3个城市PM2.5和O3质量浓度的日变化规律进行分析,发现O3呈现出昼高夜低的单峰型,而PM2.5日变化规律表现出昼低夜高单峰型,与非疫情期间的特征有所差异.进一步,应用消除趋势波动分析法(DFA)、多重分形消除趋势波动分析法(MFDFA)和概率统计分析,研究了大气复合系统中PM2.5和O3质量浓度序列的长期持续性和多重分形结构.结果发现3个城市PM2.5和O3浓度序列均具有显著的长期持续性特征和较强的多重分形结构,同时,应用去趋势互相关分析法(DCCA)方法和多重分形去趋势互相关分析法(MFDCCA)对PM2.5和O3两者之间的互相关性进行了分析,发现PM2.5-O3之间的互相关也存在显著的长期持续性特征以及在不同时间尺度存在多重分形特征.进一步将疫情期间得到的非线性分析结果与2018年和2019年同期非疫情期间的结果进行了对比分析.最后,基于自组织临界理论(SOC)探讨了大气PM2.5和O3浓度时空演化的内在动力规律,并结合典型区域气象特征,阐明了SOC内禀动力机制可能是COVID-19疫情期间大气高污染形成的主导机制之一.疫情期间大气PM2.5和O3浓度并非分别独自演化,而是依然保持复杂的相互作用.静稳气象条件下,大气复合污染内部的非线性耦合作用可能达到动力学临界状态,将导致长株潭城市群在疫情期间仍有发生大气高污染的风险.  相似文献   

11.
为对比城区与相邻县区不同空气质量下的碳组分污染特征,分别在成都市和仁寿县采集霾期及非霾期PM_(2.5)有效样品共计88个,确定其相应质量和各碳组分浓度[有机碳(OC)、元素碳(EC)和二次有机碳(SOC)等],并进行各碳组分之间的相关性及主成分分析.结果表明,不同空气质量下的城区污染物浓度均高于县区.OC和EC密切相关,非霾期的相关性系数较霾期大.与城区相比,霾期县区的SOC/PM_(2.5)较大,说明其受二次有机物污染更为明显;但城区非霾期二次气溶胶占比明显高于霾期,表明霾期的一次排放是城区大气污染的主要原因.燃煤、机动车排放和生物质燃烧均是两个区域PM_(2.5)的主要来源.  相似文献   

12.
为研究城市PM10对大气辐射环境的影响,利用2013年6月1日—2014年5月31日成都市ρ(PM10)和空气吸收剂量率的逐日监测数据,采用DCCA(去趋势互相关分析)法对二者的相关性进行分析. 结果表明:在1 a的时间尺度上,成都市ρ(PM10)与空气吸收剂量率之间存在显著的正相关性(标度指数为0.928),并且这种正相关性具有长期、持续的特征,但相关性的强度却随时间以幂函数形式缓慢衰减. 冬夏两季ρ(PM10)与空气吸收剂量率的相关性存在显著差异. 在冬季重度灰霾期间,二者DCCA标度指数为0.968,说明高ρ(PM10)已对城市大气辐射环境产生了影响;而夏季二者的DCCA曲线分为两段,标度指数分别为0.579、1.519,折点位置对应的特征时间尺度约为2个月,推测这与当地夏季降雨的时间分布模式有关. 研究表明,在当前灰霾日益频发的背景下,需要重视城市重度灰霾对城市大气辐射环境造成的影响.   相似文献   

13.
陕西省PM2.5时空分布规律及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
PM2.5是导致中国多省市发生灰霾的罪魁祸首,明确其时空分布规律,厘清其影响因素对灰霾的综合治理意义深远.基于陕西省2015年50个监测站点的PM2.5浓度数据,采用空间数据统计方法、克里金插值法以及Morlet小波分析法对陕西省PM2.5浓度的时空分布规律进行研究,并运用灰色关联模型来探讨PM2.5浓度的影响因素.结果显示:①陕西省PM2.5浓度整体呈"冬高夏低、春秋居中"的季节性变化规律,"U型"起伏的月变化规律,周期性脉冲波动型的日变化规律以及"W型"起伏的时变化规律;②陕西省PM2.5浓度呈"北部低,中南部高"的空间分布特征,并且空间集聚性显著.不同季节的高值区均集聚于海拔相对较低的关中盆地内部城市.这与盆地内部空气不易扩散,静稳天气出现频率较高,易出现逆温现象密切相关;③影响陕西省PM2.5浓度最大的指标层是PM2.5污染来源(权重值为0.49),其次是城市化与土地利用(权重值为0.37),气象与地形因子影响最小(权重值为0.15).不同城市各指标层的综合关联度差异较大.④各指标因子与PM2.5浓度均为强度关联.降水量、机动车保有量、二氧化硫排放量、烟粉(尘)排放量、建成区面积、人口密度和人均GDP是影响陕西省PM2.5浓度的主要因子,影响各城市PM2.5浓度的主要因子具有一定的空间差异性.研究显示,人类活动对陕西省PM2.5的影响显著,尤其是城市化的快速推进,相关指标(如人口、机动车、能耗、工业总产值等)持续增长,将进一步加大PM2.5来源的多样性以及相关污染物的排放量.   相似文献   

14.
金属元素是大气PM2.5的重要组成成分,对人群危害性极强且兼具源特异性,分析不同经济模式地区大气细颗粒物中金属污染状况及来源差异,可以为科学规划城市产业布局和保护大气环境提供参考.通过霾/非霾期大气PM2.5采样,使用电感耦合等离子体发射光谱仪(ICP-OES)测定成都市及仁寿县样品中18种金属元素质量浓度,分析其污染水平,并基于正定矩阵因子分解模型(PMF)解析两地大气PM2.5中金属元素的来源.结果表明,成都市扬尘源、移动源和燃煤源特征元素占元素总和的比值大于仁寿县,而仁寿县生物质燃烧源、工业源以及燃油源特征元素占比则较高.两地Cr、Cd和As元素浓度均超标,表明PM2.5中重金属污染严重.随着霾污染加剧,两地PM2.5中金属元素总量上升,但增幅远低于PM2.5浓度增长.此外,不同元素在霾期和非霾期浓度比值存在差异,成都市变化范围为0.7(Al)~2.8(Ba),仁寿县介于0.8(Al)~3.1(Mn)之间,但总的来说两地大致呈现出燃煤和工业活动排放元素增幅较大,机动车污染源次之,扬尘源增幅较缓的状况.受地区产业布局、经济规模和发展模式的影响,大气PM2.5中金属元素污染水平及来源呈现出不同的区域特征.在重点发展第三产业的大型城市,如成都,更易遭受交通运输和城市建设等带来的大气污染,而在仁寿等第二产业占比不断增加的郊县,其污染主要受化石燃料燃烧和工业过程排放的影响.  相似文献   

15.
姚青  丁净  杨旭  蔡子颖  韩素芹 《环境科学》2024,45(5):2487-2496
京津冀区域大气污染分布呈现明显的空间差异,厘清不同时间尺度下PM2.5和O3浓度分布有助于制定科学有效的污染防控措施.采用STL方法分解PM2.5和O3浓度,获取长期分量、季节分量和短期分量,研究其变化趋势与空间分布特征.结果表明,2017~2021年京津冀区域PM2.5浓度下降幅度高于O3,春、夏季PM2.5和O3浓度呈正相关,秋、冬季呈现负相关,短期分量和季节分量分别对PM2.5和O3浓度的贡献最大.PM2.5的季节分量、短期分量以及O3的长期分量和短期分量均存在2个主成分,对应河北省中南部和京津冀区域北部,在不同时间尺度上京津冀区域PM2.5和O3均存在次区域分布.与原始序列相比,长期分量能够更好地反映PM2.5和O3浓度的演变趋势;季节分量和短期分量的标准差可用于衡量各城市PM2.5和O3浓度波动情况,太行山前各城市PM2.5浓度季节分量和短期分量标准差较高,唐山的O3浓度短期分量的标准差最高.  相似文献   

16.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

17.
2006~2009年我国超大城市霾天气特征及影响因子分析   总被引:15,自引:11,他引:4  
收集了2006~2009年北京、上海、广州和成都能见度等气象因子以及SO2、NO2和PM10等环境空气质量资料,在此基础上统计分析上述4个超大城市霾天气频率季节和年际变化特征及其主要的影响因子.结果表明,北京、上海、广州和成都霾天气频率季节最高值分别为夏季、冬季、春季和秋季.北京和广州霾天气频率呈现逐渐下降趋势,而上海和成都呈现逐渐上升趋势.PM10和相对湿度是影响能见度或霾天气频率关键因子.北京能见度变化对相对湿度比较敏感,而上海和广州对PM10浓度变化比较敏感,成都对相对湿度和PM10浓度敏感程度相当.  相似文献   

18.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

19.
Long-term and synchronous monitoring of PM10 and PM2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM10, and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM2.5. Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM10, and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM2.5. The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM10 (12.7%) and PM2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号