首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
硝酸盐电子受体反硝化同时除磷试验分析   总被引:5,自引:0,他引:5  
经研究发现AAA SBR系统中的活性污泥可以利用硝酸盐作为电子受体进行缺氧吸磷并同时发生反硝化脱氮。试验利用“双泥”系统进一步探讨了污水生物反硝化同时除磷的可能性,结果表明 :“双泥”系统的“双重”吸磷以及内碳源反硝化除磷方式可以使生物处理出水磷酸盐浓度趋近于零,TP≤ 0 2 3mg L、NH3 N≤ 0 5mg L、TN≤ 8mg L、CODCr≤2 5mg L。  相似文献   

2.
杨庆娟  王淑莹  刘莹  袁志国  葛翀 《环境科学》2008,29(8):2249-2253
以实际生活污水为对象,研究了反硝化聚磷菌(DPB)的驯化培养以及A2N双污泥反硝化除磷系统的快速启动.采用先独立培养反硝化聚磷菌和好氧硝化生物膜再连续运行的方式成功地快速启动了A2N系统.采用污水处理厂除磷工艺中的活性污泥为种泥,在SBR系统中以先A/O(厌氧/好氧)后A/A(厌氧/缺氧)的方式运行,32 d成功地使反硝化聚磷菌成为优势菌属.在SBR反应器中,采用硝化效果较好的活性污泥为种泥,好氧硝化生物膜30 d挂膜成功,氨氮去除率稳定在99%以上.然后,A2N系统连续运行,11 d后系统反硝化除磷效果进入稳定状态,出水氨氮和正磷酸盐浓度均为0,硝态氮为10.26 mg/L ,出水COD为19.56 mg/L ,COD、氨氮、总氮和磷去除率分别为91%、100%、77%和100%,说明A2N系统具有很好的脱氮除磷效果,认为系统启动成功.  相似文献   

3.
温度及反硝化聚磷对SBMBBR脱氮除磷的影响   总被引:7,自引:2,他引:5  
吴广华  张耀斌  全燮  赵雅芝 《环境科学》2007,28(11):2484-2487
实验在维持进水COD、PO3-4-P和NH+4-N浓度分别为450 mg/L 、10 mg/L和40 mg/L左右的条件下,考察了较低温度(14℃±1℃)和较高温度(24℃±1℃)对SBMBBR(序批式移动床生物膜反应器)除磷脱氮效果的影响.结果表明,14℃±1℃和24℃±1℃下,PAOs(聚磷菌)的释磷量分别为54 .7 mg/L、19 .7 mg/L;除磷率分别为98 .3%、83 .4%;脱氮率分别为87 .8%、98 .4%.较低温度有利于PAOs的富集,但不利于硝化的进行;较高温度有利于硝化反硝化的进行,但PAOs不再是污泥系统的优势菌种.同时在经过较长时间(3个月)厌氧/好氧运行的污泥系统中进行了厌氧/缺氧反硝化除磷实验,该系统内反硝化聚磷除磷效果较好,反硝化吸磷占总吸磷量的80%左右.  相似文献   

4.
采用反硝化除磷工艺进行生产性试验处理城市污水,结果表明:该工艺处理城市污水可以达到GB18918--2002一级标准,DPB污泥沉降性能良好,污泥浓度控制在4500-5500mg/L时确定的污泥回流比为20—35%,最佳水力停留时间为:厌氧段0.5~1h,缺氧段1.5~2h;缺氧段后面的再曝气段有利于污泥沉降并可保证除磷效果。  相似文献   

5.
反硝化生物滤池的挂膜与启动   总被引:2,自引:0,他引:2  
研究了反硝化生物滤池的挂膜与启动过程,为反硝化生物滤池的挂膜过程提供理论依据。在滤速1.2ngh(HRT=20min)时,当反硝化生物滤池运行到第25天时,进水硝态氮质量浓度由50mg/L左右下降到25mg/L左右时,硝态氮去除负荷由1.18kg/(m^3·d)下降到1.10kg/(m^3·d),负荷变化很小,说明挂膜成功。在反硝化生物滤池中,氨氮主要由反硝化细菌的合成作用去除,去除率不高。在碳源和硝态氮浓度都充足的情况下,反硝化反应遵循零级反应动力学规律,反硝化速率与污染物浓度无关,只与反硝化菌的数量有关。  相似文献   

6.
利用静态试验研究了电子受体类型对反硝化吸磷的影响,并且对以硝酸盐作为电子受体的反硝化除磷工艺提出了建议。试验结果表明:电子受体初始浓度为10.58mg/L-22.33mg/L时,以硝酸盐作为电子受体时的反硝化速率要大于以亚硝酸盐作为电子受体的反硝化速率;以硝酸盐作为电子受体时的缺氧吸磷速率也大于以亚硝酸盐作为电子受体时的缺氧吸磷速率。以硝酸盐作为电子受体的反硝化除磷系统中,亚硝酸盐冲击负荷会对系统脱氮除磷效果产生严重的影响。  相似文献   

7.
为探究自行设计的A~3/O-MBR工艺脱氮除磷性能,以模拟生活污水为处理对象,重点研究了在内循环回流比(γ)为100%,硝化液回流比(α)分别为100%、200%、300%条件下系统反硝化除磷特性。结果表明:缺氧II区是工艺反硝化除磷的关键,系统具有优良的同步脱氮除磷效果,ρ(COD)出水均低于50 mg/L。当回流比为200%时,系统对TN、TP去除效果最好,平均去除率分别为75.46%和88.94%,出水平均ρ(TN)、ρ(TP)分别为14.97 mg/L和0.48 mg/L。通过静态释/吸磷试验测定不同硝化液回流比条件下反硝化聚磷菌占总聚磷菌的比例及污泥含磷量,当回流比为200%时,反硝化聚磷菌所占比例最高达95.47%,该回流比条件下缺氧II区污泥含磷量最高为23.07 mg/L,最大吸磷量为0.2136 g/d。  相似文献   

8.
膜生物反应器处理生活污水的实验研究   总被引:2,自引:0,他引:2  
实验采用一体式膜生物反应器处理生活污水,实验表明:当污泥浓度为6000mg/L,DO为3.0mg/L以上,进水pH值为7.0—8.5,温度为7—13℃。HRT为8h的条件下,膜生物反应器对COD、BOD,悬浮物、氨氮、总氮、总磷的去除率分别为95%、98%、100%、97%、60%-80%、34%-54%。同时发现,膜生物反应器内部存在部分同步硝化反硝化的条件;对TP的去除率较低,主要是由于系统排泥较少。  相似文献   

9.
研完了磷亏缺芦苇在不同氮浓度梯度下(0mg/L、2mg/L、5mg/L、15mg/L)干重、鲜重、叶面积等形态学指标和叶片叶绿素、丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)等生理学指标的变化,研究结果表明:芦苇形态学指标和叶片叶绿素含量均随氮浓度的增加呈现先增加(低浓度范围:0-5mg/L)后减小(高浓度范围:5—15mg/L)的趋势。MDA及活性氧清除系统指标则呈现先降低(低浓度范围:0-5mg/L)后升高(高浓度范围:5—15mg/L)的趋势。表明在低浓度范围内,氮浓度增加可以缓解芦苇磷亏缺胁迫症状,而当氯浓度超过了芦苇的耐受阂值之后(5mg/L),芦苇在磷亏缺和氮过量的双重胁迫下,体内活性氧清除系统被破坏。与正常磷供给相比(10mg/L),磷亏缺芦苇对氯的耐受阈值下降了96.8%—90.6%。研究结果可为富营养化水体水生态环境的改善提供科学依据。  相似文献   

10.
新型SBR工艺是在传统SBR工艺基础上进行改进,于反应器中加一隔板而成的。实验研究了不同的C/N、DO和好氧区与缺氧厌氧区体积比对同步硝化反硝化的影响,当进水CODcr NH4^+-N浓度分别为198-604、48.7~57.0mg/L,DO浓度为1.0~3.0mg/L时反应器中CODcr、NH4^+-N去除率分别达到89.3%~93.4%、77.6%~97.5%。  相似文献   

11.
碳源浓度和污泥龄对反硝化聚磷脱氮影响研究   总被引:3,自引:2,他引:1  
利用间歇试验研究了反硝化除磷过程中有机碳源和污泥龄对脱氮除磷的影响。试验结果表明:(1)厌氧段碳源COD浓度越高(150~250mg/L),放磷越充分,则缺氧段反硝化和吸磷速率越大;但当碳源COD浓度超过200mg/L时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用。(2)在水温为15℃~25℃,污泥负荷为0.12kgCOD(/kgMLSS·d),SRT为15d,HRT为7h时,利用人工配水作为碳源,在保持较高的COD去除率的同时,总氮和总磷的去除率最高,分别在80%和88%以上。  相似文献   

12.
内循环对A2/O-曝气生物滤池工艺脱氮除磷特性影响   总被引:8,自引:6,他引:2  
在原水温度为15℃和C/N为4.9的条件下,以实际生活污水为研究对象,重点考察了内回流比为100%、200%、300%和400%时小试规模A2/O-曝气生物滤池工艺脱氮除磷特性.结果表明,该生化系统可实现有机物、氮和磷的同步深度去除.在总HRT为8.0 h、SRT为15 d、污泥回流比为100%和MLSS为4.0 g·...  相似文献   

13.
1株脱氮除磷菌的筛选及其特性研究   总被引:1,自引:0,他引:1  
蔡天明  陈立伟  吴守中  钱丽花  任倩 《环境科学》2010,31(10):2487-2492
采用YG培养基,结合蓝白斑筛选、异染粒染色及好氧除磷能力检测等实验,从城市生活污水处理厂好氧生化池的活性污泥中分离出7株好氧除磷菌;再经硝酸盐还原产气和缺氧培养实验,筛选出1株高效脱氮除磷菌;通过16S rRNA基因同源性比较和生理生化鉴定,初步将其鉴定为Pseudomonas grimontii,命名为C18.菌株C18在好氧培养24h后,培养基中上清液磷浓度从38.7mg/L降低到2.28mg/L,除磷率达94.1%.C18在缺氧培养24h后,培养基中上清液磷浓度从44.5mg/L降低到5.21mg/L,除磷率达88.3%;上清液硝酸盐氮浓度从184.2mg/L降低到30.6mg/L,脱氮率达83.4%.菌株C18最适脱氮除磷温度为30℃;最适脱氮除磷pH为7.5.  相似文献   

14.
张耀斌  邢亚彬  荆彦文  全燮 《环境科学》2010,31(10):2360-2364
采用厌氧-缺氧条件运行的序批式移动床生物膜反应器,考察了NO3--N进水浓度及其投加方式对低碳废水(COD=200mg/L)反硝化除磷的影响.经驯化后,反硝化聚磷菌(DPB)在总聚磷菌的份额从15.7%增长到71.3%,富集了DPB.NO3--N的浓度对处理有较大影响.在NO3--N为30mg/L(即C/N=6.7:1)时,COD、PO43--P和NO3--N的去除率分别为97.8%、82.0%和81.2%,实现低碳污水的高效处理.NO3--N较低或较高浓度(20mg/L和40mg/L)时,缺氧段吸磷不充分,PHB由厌氧开始时的2.2mg/g左右分别积累至5.1mg/g和3.5mg/g,影响下一周期磷的释放.1次投加、2次投加和连续流加NO3--N,除对缺氧初期的反硝化吸磷速率有影响外,对反硝化除磷的效率影响不明显.  相似文献   

15.
为了提高系统的反硝化除磷脱氮效率,采用静态试验考察了厌氧反应时间和厌氧段COD对A2O-BAF工艺反硝化聚磷效果的影响,同时对缺氧阶段反硝化聚磷量与脱氮量之间的关系进行了探讨.试验结果发现,在试验范围内,随着厌氧反应时间和厌氧段COD的增加,厌氧释磷量均增加,反硝化聚磷量,净聚磷量和硝氮去除量亦都随之增加,但是反硝化聚磷量与释磷量的比值基本维持不变.在2组8个不同的试验条件下,缺氧段反硝化聚磷量和脱氮量之间均呈现出良好的线性关系,系数为1.007~1.053,R2为0.992~0.997,反映了A2O-BAF系统中污泥的固有特性.  相似文献   

16.
铁盐常作为化学药剂来辅助城市污水处理厂的生物除磷. 利用间歇试验考察投加不同ρ(FeCl3)时反硝化除磷系统中污染物的去除效果以及EPS(胞外聚合物)、PHA(聚羟基脂肪酸酯)、糖原的形成与转化,并通过分析胞内Fe3+含量来解析Fe3+对反硝化除磷系统的影响. 结果表明:①Fe3+投加量(以ρ计)<10 mg/L时,系统中PO43-P的去除率由未投加时的88.4%升至100%;Fe3+投加量>10 mg/L时,PO43-P的去除率随Fe3+投加量的增加而缓慢降至84.4%(Fe3+投加量为25 mg/L时). ②Fe3+投加量(10 mg/L)较低时,会增加污泥中w(总EPS);但由于Fe3+会与EPS中的羟基、氨基等官能团发生络合反应,导致Fe3+投加量(>10 mg/L)较高时可检出的w(总EPS)降低. ③投加Fe3+对厌氧段内w(PHA)、w(糖原)的变化及生物释磷的抑制作用影响不大,但Fe3+投加量(>10 mg/L)较高时对缺氧段NO3--N的生物利用、生物吸磷作用以及PHA和糖原的转化速率有明显的抑制作用. ④缺氧阶段末胞内Fe3+含量(以w计)增加144%(Fe3+投加量为25 mg/L时),说明抑制作用主要是因为缺氧段Fe3+随细胞吸磷作用一并进入胞内,直接影响生物酶活性.   相似文献   

17.
SBR中生物除磷颗粒污泥的反硝化聚磷研究   总被引:2,自引:1,他引:1  
反硝化聚磷菌(DNPAOs)可利用厌氧储存的聚.3.羟基丁酸(PHB)以硝酸盐和亚硝酸盐为电子受体进行过量吸磷和反硝化,从而达到在低碳源下脱氮除磷的双重目的.本试验在SBR反应器中,采用厌氧,缺氧/好氧(A/A/O)交替运行的方式.将富集聚磷菌(PAOs)的颗粒污泥成功地诱导为具有反硝化聚磷能力的颗粒污泥.诱导结束后P的去除率在90%以上,NOx-N的去除率在93%以上,厌氧段释磷量在25-33 mg/L,缺氧段每去除lg NOx-N吸收P约1.3 g;典型周期运行结果显示,厌氧段最大比释磷速率(SRPR)为18.39 mg/(g.h),缺氧段最大比吸磷速率(SUPR)为23.72 mg/(g·h),最大比反硝化速率(SDNR)为18.19mg/(g·h),好氧段最大SUPR为17.15 me,/(g·h):颗粒污泥中DNPAOs的数量由诱导前的14.9%增加到80.7%.与除磷颗粒污泥相比.反硝化聚磷颗粒污泥沉速提高0.16-0.7倍,比重提高0.003 1.  相似文献   

18.
分别以硝酸盐、亚硝酸盐、氧气为电子受体,采用3组SBR反应器培养除磷污泥,连续126d的稳定运行表明:以硝酸盐、亚硝酸盐、氧气为电子受体除磷污泥对TP平均去除率分别为84.8%, 78.7%, 87.4%,出水TP平均浓度分别为0.758, 0.931, 0.632mg/L.采用高通量测序技术对不同电子受体除磷污泥的相似性与菌群结构进行了研究,结果表明,以硝酸盐,亚硝酸盐为电子受体的反硝化除磷污泥具有近似的菌群结构,与好氧除磷污泥菌群结构差异较大.基于各样品主导OTUs序列的系统发育关系及其比例的分布,主导微生物主要可以分为5个簇.通过序列比对,在97%的序列相似度条件下,种泥中聚磷菌与聚糖菌序列比例为0.716%与0.368%,以硝酸盐、亚硝酸盐、氧气为电子受体除磷污泥中聚磷菌与聚糖菌序列比例分别为1.78%, 2.53%, 4.80%与1.44%, 1.32%, 30.9%,厌氧-缺氧条件有利于抑制聚糖菌.亚硝酸盐为反硝化除磷污泥电子受体时潜在公共卫生安全隐患.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号