首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
实验研究了填充新型无剩余污泥悬浮型生物滤料的曝气生物滤池处理养殖废水的挂膜情况及水力停留时间(HRT)变化对曝气生物滤池处理效果及运行特性的影响。结果表明,含氨氮和亚硝酸氮浓度较高的模拟养殖污水用活性污泥挂膜,大约1个月就能使生物滤池启动。当模拟养殖污水氨氮起始浓度在2mg/L左右时最佳水力停留时间(HRT)为0.6h循环6d能使氨氮浓度降到0.03mg/L左右,亚硝酸氮有短期积累问题,但最终都能被降到0.05mg/L以下。水力停留时间影响氨氮的去除时间,从而影响亚硝酸氮的积累。水力停留时间(HRT)对有机物(CODMn)去除影响不大,且该种滤料对有机物(CODMn)去除效果较差,去除率在28%左右。  相似文献   

2.
以污水厂实际二级出水为处理目标,通过中试试验研究了陶粒滤料反硝化生物滤池、固定床反硝化砂滤池和连续过滤连续反冲砂滤池的特性。以甲醇作为外加碳源,3种滤池均可实现出水平均总氮小于5 mg/L。不足量投加外碳源会出现出水亚硝态氮的积累。当进水TN为15 mg/L左右时,为达到出水TN小于5 mg/L,生物滤池、固定床砂滤池和连续过滤砂滤池建议滤速分别为不大于8,5.2,6.2 m/h;滤池反硝化碳源投加比例分别为4.28,3.0,3.2 g甲醇/gTN;对应的反硝化容积负荷平均值分别为1.1,0.8,1.2 kg/(m3·d)。进水组分分析发现,有机氮不是出水总氮小于5 mg/L的限制因素。  相似文献   

3.
曝气生物滤池好氧反硝化脱氮的研究   总被引:4,自引:3,他引:1  
邓康  黄少斌  胡婷 《环境科学》2010,31(12):2945-2949
采用某钢铁厂含氮废水,利用生物滤池工艺,研究了曝气生物滤池的挂膜、溶解氧、碳氮比对好氧反硝化脱氮的影响.结果表明,利用富含好氧反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率90%.当溶解氧较低时(DO为1.5~4.2mg/L),随着溶解氧的增大,反硝化效率提高,其中以DO为3.5 mg/L时的效果最好,脱氮率为95.4%.随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%.可推断系统中有好氧反硝化菌,存在以O2作为电子受体的好氧反硝化现象.随着碳氮比(COD/N)增大,反硝化效果提高.当COD/N为6~7时,基本能够满足反硝化所需碳源.此时脱氮率大于96%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右.  相似文献   

4.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

5.
以高浓度硝氮废水为研究对象,考察反硝化生物滤池(DNBF)的启动情况以及稳定运行时饥饿时间、水力停留时间(HRT)和进水负荷对硝氮去除率的影响。结果表明:经过36 d的启动驯化后,DNBF对浓度为100 mg/L的硝氮去除率达90%以上;饥饿10 d后,DNBF重新启动13 d后可恢复到饥饿前的脱氮水平;进水硝氮浓度150 mg/L时,HRT从2 h增加到6 h后,硝氮去除率从48.8%升高到79.9%;而当进水负荷从0.59 kg/(m3·d)增加到3.28 kg/(m3·d)时,去除率基本稳定在81.4%。  相似文献   

6.
用充填陶瓷滤料的曝气生物滤池研究碳和氮代谢特性。曝气生物滤池进水氨氮为52mg/L左右、COD为100mg/L左右和回流比为200%时,经过20多d的运行,出水氨氮小于0.05mg/L、COD小于25mg/L、亚硝态氮为4.7mg/L和硝态氮为7.1mg/L,COD去除率达75%,氨氮去除率达99.9%,总氮去除率达78%;过大和过小的回流比对曝气生物滤池的运行性能都是不利的。研究成果可以应用于一般城市污水以及含低COD、高氨氮工业废水的处理。  相似文献   

7.
文章采用陶粒滤料为载体,研究了在冬季低温条件下化学混凝-曝气生物滤池工艺对模拟灰水的中试研究。实验结果表明,在冬季水温为3℃-15℃的条件下,初沉处理大大减轻了后续曝气生物滤池的运行负荷的同时也提高了整个工艺的搞冲击能力。当曝气生物滤池水力负荷为3.8m/h时,COD、LAS的去除效率分别在70%、80%以上。NH4-N去除效率受LAS、COD、温度影响较大,整个工况去除效率在15%~75%。NH4-N的去除效率随着COD负荷的增加,其去除效率受到严重的影响。COD的去除负荷率为2.85kg/(m^3滤料·d)升高到5.04kg/(m^3滤料·d)时,NH4-N的去除率则由61%-77%,下降到26%~41%,说明了异养微生物的生长严重抑制了硝化亚硝化细菌的生长。  相似文献   

8.
冬季低温条件下,污水脱氮效果容易变差。研究了在低温(10±1)℃条件下,投加介体1,2-萘醌-4磺酸(NQS)对生物反硝化脱氮的影响。实验结果表明:当硝态氮的浓度为65~85 mg/L,温度控制在(10±1)℃条件时,生物的反硝化脱氮性能变差,但投加介体后可以显著改善这种性能,硝态氮的浓度从开始的84.27 mg/L降为64.34 mg/L,与空白实验硝态氮去除率的15.78%相比,投加介体可以使硝态氮的去除率提高到23.65%,脱氮速率达2.66 mg NO_x~--N/(g VSS·h)。  相似文献   

9.
研究在低水温条件下连续砂滤池的反硝化脱氮效果及其主要影响因素,寻找最佳的甲醇碳源投加比。运行结果表明:当水温降低至11.7℃时,在连续砂滤池里反硝化菌培养时间为24 d;反硝化脱氮稳定运行后,砂滤池的滤速为4 m/h时反硝化去除总氮量超过15 mg/L,容积负荷达0.6 kg/(m3·d),最佳甲醇碳源投加比为2.8~3.2,出水COD、SS浓度均可达到一级A排放标准;影响连续砂滤池反硝化脱氮效果的主要因素为进水水温、硝酸盐浓度、溶解氧浓度、上升水力流速和甲醇投加比。  相似文献   

10.
何腾霞  倪九派  李振轮  孙权  冶青  徐义 《环境科学》2016,37(3):1082-1088
分别采用高浓度的铵态氮、硝态氮、亚硝态氮、有机氮模拟废水和铵态氮与硝态氮、铵态氮与亚硝态氮混合模拟废水,研究耐冷反硝化细菌Arthrobacter arilaitensis Y-10的异养硝化、好氧反硝化以及同时硝化和反硝化能力,通过测定Y-10菌株在整个脱氮过程中的D600值,分析细菌生长与生物脱氮之间的联系.结果表明,耐冷菌株Arthrobacter arilaitensis Y-10具有很强的硝化和反硝化能力,15℃条件下,4 d内分别可将铵态氮由208.43 mg·L~(-1)降至72.92 mg·L~(-1),去除率65.0%;硝态氮由201.16mg·L~(-1)降至0 mg·L~(-1),去除率为100%;亚硝态氮由194.33 mg·L~(-1)降至75.43 mg·L~(-1),去除率为61.2%.该菌只在含硝态氮的模拟废水中才会产生亚硝态氮积累;此外,在混合模拟废水中,以去除铵态氮为主.总之,Arthrobacter arilaitensis Y-10能在15℃条件下有效进行异养硝化和好氧反硝化作用,在不同无机氮混合模拟废水中对铵态氮的去除率高达80.0%以上.  相似文献   

11.
研究了ANAMMOX耦合异养反硝化反应器的启动过程,考察了苯酚浓度对耦合反应器脱氮性能的影响.接种2L(占反应器有效容积的20%)挥发性悬浮固体(MLVSS)为6000mg/L的ANAMMOX颗粒污泥,在pH7.8、温度为25℃、HRT为1.5h的条件下经过86d的培养,ANAMMOX耦合异养反硝化启动成功.实验结果表明,在稳定运行阶段,NH4+-N、NO2--N和TN平均去除率分别为85.4%、86.1%和79.9%,TN平均容积负荷和TN平均去除负荷分别为2.63,2.10kg/(m3·d);ANAMMOX颗粒污泥外面包裹着苯酚反硝化菌;系统内异养反硝化与ANAMMOX存在协同和竞争关系.当苯酚浓度≥0.3mmol/L时,ANAMMOX菌的活性受到很大抑制,苯酚浓度的升高加剧了苯酚反硝化菌与ANAMMOX菌之间的竞争;从脱氮效果及系统稳定两方面综合考虑,当苯酚浓度为0.2mmol/L时,耦合效果最好,消耗的NH4+-N、NO2--N与生成的NO3--N之比为1:1.52:0.11.  相似文献   

12.
利用固相反硝化同时去除水中硝酸盐和4-氯酚   总被引:5,自引:1,他引:4  
王旭明  王建龙 《环境科学》2009,30(5):1420-1424
研究了固相反硝化技术同时去除水中硝酸盐和4-氯酚的可行性.结果表明,以可降解餐盒为碳源和微生物附着载体进行异养反硝化,能有效去除水中的硝酸盐.在批式实验条件下,当NO-3-N初始浓度为50 mg/L时,平均反硝化速率为24.0 mg/(L·h).当4-氯酚浓度低于30 mg/L时,对反硝化脱氮有促进作用;大于40 mg/L时,对反硝化有抑制作用.在反硝化条件下,当4-氯酚的初始浓度分别为5 mg/L和30 mg/L时,8 h后其去除率分别为90%和71%,4-氯酚的去除是由于可降解餐盒的吸附作用及附着微生物的降解作用.  相似文献   

13.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1  
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

14.
Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon source. Long-term performance, biokinetics of denitrification and biofilm growth were evaluated under filtration velocities of 6, 10 and 14 m/hr. The pilot-scale biofilter removed nitrate from the secondary effluent effectively, and the nitrate nitrogen(NO_3-N) removal percentage was 82%, 78% and 55% at the filtration velocities of 6, 10 and 14 m/hr, respectively. At the filtration velocities of 6 and 10 m/hr, the nitrate removal loading rate increased with increasing influent nitrate loading rates, while at the filtration velocity of 14 m/hr, the removal loading rate and the influent loading rate were uncorrelated.During denitrification, the ratio of consumed chemical oxygen demand to removed NO_3-N was 3.99–4.52 mg/mg. Under the filtration velocities of 6, 10 and 14 m/hr, the maximum denitrification rate was 3.12, 4.86 and 4.42 g N/(m~2·day), the half-saturation constant was 2.61, 1.05 and 1.17 mg/L, and the half-order coefficient was 0.22, 0.32 and 0.24(mg/L)1/2/min,respectively. The biofilm biomass increased with increasing filtration velocity and was 2845,5124 and 7324 mg VSS/m~2 at filtration velocities of 6, 10 and 14 m/hr, respectively. The highest biofilm density was 44 mg/cm~3 at the filtration velocity of 14 m/hr. Due to the low influent loading rate, biofilm biomass and thickness were lowest at the filtration velocity of 6 m/hr.  相似文献   

15.
Anammox transited from denitrification in upflow biofilm reactor   总被引:5,自引:2,他引:5  
Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m^3 .d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L,respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.  相似文献   

16.
以闭合循环养殖系统去除硝酸盐为目的,研究了以一种非水溶性可生物降解多聚物材料(BDPs)PBS颗粒作为反硝化碳源和生物膜载体的填料床反应器对于废水中硝酸盐的去除效果及动力学特征.结果表明,在温度为(29±1)℃,进水NO 3--N浓度为25~334 mg/L的条件下,进水NO 3--N负荷0.107~1.098 kg/(m3.d)为最适进水负荷.当进水负荷为1.098 kg/(m3.d)时,可达到最大NO 3--N体积去除负荷0.577 kg/(m3.d).进一步增加进水NO 3--N负荷则NO 3--N体积去除负荷开始下降.动力学研究结果表明,以PBS作为碳源和生物膜载体的反硝化速率遵循一级反应动力学.用Eckenfelder模型拟合,并求出常数n值和K值,建立的动力学模型采用该参数可以预测出水NO 3--N浓度.对模型的预测值与实际值采用统计软件SPSS16.0做方差分析表明,p0.05,分别为p=0.5530.05和p=0.6320.05,模型预测值与实际值无显著性差异.  相似文献   

17.
采用气体循环序批式生物膜反应器(gcSBBR),构建反硝化型甲烷好氧氧化(AME-D)系统.考察了进水氮负荷的影响,发现氮负荷为0.075kg/(m3·d)时,硝酸盐氮去除率达到98.93%,其反硝化速率为74.25mg/(L·d),系统的甲烷日平均消耗量为35.91%(初期为50%);扫描电子显微镜(SEM)分析结果显示,系统中的微生物主要以短杆菌(12~18 μm)为主,并存在少量的丝状菌(长150~200μm);16S rRNA高通量测序结果显示,该系统中的甲烷氧化菌为Methylocaldum、Methylomonas、Methylococcus和Methylococcaceae_unclassified,反硝化菌为Denitratisoma、Hydrogenophaga、Azoarcus、Thiobacillus和Rhodobacter,其中主要的功能微生物为Methylocaldum、Denitratisoma和Hydrogenophaga,系统对氮的去除是由好氧甲烷氧化菌与反硝化菌协同实现.此外,系统中存在大量以甲醇和甲基胺类物质为生长基质的Methylophilaceae_uncultured(30.4%).  相似文献   

18.
以生活污水作为处理对象,采用双泥折流板反应器,进行了反硝化除磷的启动运行试验研究。在进水有机负荷为0.5kg/(m^3.d),m(C)lm(N)=5,t=30(+0.5)℃,HRT=11.08h,R=0.4,r=0.38,SRT=20d的条件下,系统对CODCr,TN,TP,氨氮的去除率分别为67%,63%,50%和82%,出水质量浓度分别为70mg/L,18mg/L,2.8mg/L,6.8mg/L.表明采用该装置进行反硝化除磷的研究是可行的。  相似文献   

19.
Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon source. Long-term performance, biokinetics of denitrification and biofilm growth were evaluated under filtration velocities of 6, 10 and 14 m/hr. The pilot-scale biofilter removed nitrate from the secondary effluent effectively, and the nitrate nitrogen (NO3-N) removal percentage was 82%, 78% and 55% at the filtration velocities of 6, 10 and 14 m/hr, respectively. At the filtration velocities of 6 and 10 m/hr, the nitrate removal loading rate increased with increasing influent nitrate loading rates, while at the filtration velocity of 14 m/hr, the removal loading rate and the influent loading rate were uncorrelated. During denitrification, the ratio of consumed chemical oxygen demand to removed NO3-N was 3.99–4.52 mg/mg. Under the filtration velocities of 6, 10 and 14 m/hr, the maximum denitrification rate was 3.12, 4.86 and 4.42 g N/(m2·day), the half-saturation constant was 2.61, 1.05 and 1.17 mg/L, and the half-order coefficient was 0.22, 0.32 and 0.24 (mg/L)1/2/min, respectively. The biofilm biomass increased with increasing filtration velocity and was 2845, 5124 and 7324 mg VSS/m2 at filtration velocities of 6, 10 and 14 m/hr, respectively. The highest biofilm density was 44 mg/cm3 at the filtration velocity of 14 m/hr. Due to the low influent loading rate, biofilm biomass and thickness were lowest at the filtration velocity of 6 m/hr.  相似文献   

20.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号